
The eCos Component Writer's Guide

Bart Veer
John Dallaway

Alex Schuilenburg

The eCos Component Writer's Guide
by Bart Veer, John Dallaway, and Alex Schuilenburg

Publication date 25 August 2020
Copyright © 2000, 2001 Free Software Foundation, Inc.
Copyright © 2014, 2016, 2017 eCosCentric Limited

Open Publication License

The document containing or referencing this license was produced in full, or in part if the document contains multiple licensing
references, from work that is subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the
latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is
obtained from the copyright holder(s).

http://www.opencontent.org/openpub/

Table of Contents
1. Overview .. 1

Terminology .. 1
Component Framework ... 1
Configuration Option .. 1
Component .. 1
Package .. 1
Configuration .. 2
Target .. 2
Template .. 2
Properties .. 2
Consequences .. 2
Constraints .. 3
Conflicts ... 3
CDL .. 3
Component Repository .. 3

Why Configurability? ... 4
Approaches to Configurability .. 4
Degrees of Configurability .. 5
Warnings .. 7

2. Package Organization .. 8
Packages and the Component Repository ... 8
Package Versioning .. 9
Package Contents and Layout ... 10

Outline of the Build Process .. 11
Configurable Source Code ... 12
Exported Header Files ... 13
Package Documentation ... 15
Test Cases ... 15
Host-side Support ... 15

Making a Package Distribution ... 15
The eCos package distribution file format .. 15
Preparing eCos packages for distribution .. 16

3. The CDL Language .. 18
Language Overview .. 18
CDL Commands .. 19
CDL Properties .. 21

Information-providing Properties ... 22
The Configuration Hierarchy .. 22
Value-related Properties ... 23
Generating the Configuration Header Files ... 24
Controlling what gets Built .. 25
Miscellaneous Properties ... 26

Option Naming Convention .. 27
An Introduction to Tcl .. 29
Values and Expressions ... 32

Option Values .. 32
Ordinary Expressions .. 37
Functions .. 40
Goal Expressions .. 42
List Expressions ... 43

Interfaces .. 44
Updating the ecos.db database .. 45

4. The Build Process ... 47
Build Tree Generation ... 47
Configuration Header File Generation .. 48

iii

The eCos Component Writer's Guide

The system.h Header .. 52
Building eCos .. 53

Updating the Build Tree .. 53
Exporting Public Header Files .. 53
Compiling ... 55
Generating the Libraries .. 56
The extras.o file ... 57
Compilers and Flags ... 57
Custom Build Steps .. 59
Startup Code .. 62
The Linker Script ... 62

Building Test Cases .. 62
5. CDL Language Specification .. 64

cdl_option ... 65
cdl_component ... 67
cdl_package ... 69
cdl_interface ... 71
active_if .. 73
calculated .. 75
compile ... 77
default_value ... 79
define ... 81
define_format ... 83
define_header ... 84
define_proc ... 85
description ... 87
display .. 88
doc ... 89
flavor ... 90
hardware ... 92
if_define ... 93
implements .. 95
include_dir .. 96
include_files .. 97
legal_values ... 98
library ... 100
make ... 101
make_object ... 103
no_define .. 105
parent ... 106
requires ... 108
script .. 109

iv

Chapter 1. Overview
eCos® was designed from the very beginning as a configurable component architecture. The core eCos system consists of a
number of different components such as the kernel, the C library, an infrastructure package. Each of these provides a large
number of configuration options, allowing application developers to build a system that matches the requirements of their
particular application. To manage the potential complexity of multiple components and lots of configuration options, eCos
comes with a component framework: a collection of tools specifically designed to support configuring multiple components.
Furthermore this component framework is extensible, allowing additional components to be added to the system at any time.

Terminology
The eCos component architecture involves a number of key concepts.

Component Framework
The phrase component framework is used to describe the collection of tools that allow users to configure a system and administer
a component repository. This includes the ecosconfig command line tool, the graphical configuration tool, and the package
administration tool. Both the command line and graphical tools are based on a single underlying library, the CDL library.

Configuration Option
The option is the basic unit of configurability. Typically each option corresponds to a single choice that a user can make. For
example there is an option to control whether or not assertions are enabled, and the kernel provides an option corresponding
to the number of scheduling priority levels in the system. Options can control very small amounts of code such as whether or
not the C library's strtok gets inlined. They can also control quite large amounts of code, for example whether or not the
printf supports floating point conversions.

Many options are straightforward, and the user only gets to choose whether the option is enabled or disabled. Some options
are more complicated, for example the number of scheduling priority levels is a number that should be within a certain range.
Options should always start off with a sensible default setting, so that it is not necessary for users to make hundreds of decisions
before any work can start on developing the application. Once the application is running the various configuration options can
be used to tune the system for the specific needs of the application.

The component framework allows for options that are not directly user-modifiable. Consider the case of processor endianness:
some processors are always big-endian or always little-endian, while with other processors there is a choice. Depending on the
user's choice of target hardware, endianness may or may not be user-modifiable.

Component
A component is a unit of functionality such as a particular kernel scheduler or a device driver for a specific device. A component
is also a configuration option in that users may want to enable or disable all the functionality in a component. For example,
if a particular device on the target hardware is not going to be used by the application, directly or indirectly, then there is no
point in having a device driver for it. Furthermore disabling the device driver should reduce the memory requirements for
both code and data.

Components may contain further configuration options. In the case of a device driver, there may be options to control the
exact behavior of that driver. These will of course be irrelevant if the driver as a whole is disabled. More generally options
and components live in a hierarchy, where any component can contain options specific to that component and further sub-
components. It is possible to view the entire eCos kernel as one big component, containing sub-components for scheduling,
exception handling, synchronization primitives, and so on. The synchronization primitives component can contain further
sub-components for mutexes, semaphores, condition variables, event flags, and so on. The mutex component can contain
configuration options for issues like priority inversion support.

Package
A package is a special type of component. Specifically, a package is the unit of distribution of components. It is possible to create
a distribution file for a package containing all of the source code, header files, documentation, and other relevant files. This

1

Overview

distribution file can then be installed using the appropriate tool. Afterwards it is possible to uninstall that package, or to install
a later version. The core eCos distribution comes with a number of packages such as the kernel and the infrastructure. Other
packages such as network stacks can come from various different sources and can be installed alongside the core distribution.

Packages can be enabled or disabled, but the user experience is a little bit different. Generally it makes no sense for the tools
to load the details of every single package that has been installed. For example, if the target hardware uses an ARM processor
then there is no point in loading the HAL packages for other architectures and displaying choices to the user which are not
relevant. Therefore enabling a package means loading its configuration data into the appropriate tool, and disabling a package
is an unload operation. In addition, packages are not just enabled or disabled: it is also possible to select the particular version
of a package that should be used.

Configuration

A configuration is a collection of user choices. The various tools that make up the component framework deal with entire
configurations. Users can create a new configuration, output a savefile (by default ecos.ecc), manipulate a configuration,
and use a configuration to generate a build tree prior to building eCos and any other packages that have been selected. A
configuration includes details such as which packages have been selected, in addition to finer-grained information such as
which options in those packages have been enabled or disabled by the user.

Target

The target is the specific piece of hardware on which the application is expected to run. This may be an off-the-shelf evaluation
board, a piece of custom hardware intended for a specific application, or it could be something like a simulator. One of the
steps when creating a new configuration is need to specify the target. The component framework will map this on to a set of
packages that are used to populate the configuration, typically HAL and device driver packages, and in addition it may cause
certain options to be changed from their default settings to something more appropriate for the specified target.

Template

A template is a partial configuration, aimed at providing users with an appropriate starting point. eCos is shipped with a small
number of templates, which correspond closely to common ways of using the system. There is a minimal template which
provides very little functionality, just enough to bootstrap the hardware and then jump directly to application code. The default
template adds additional functionality, for example it causes the kernel and C library packages to be loaded as well. The
uitron template adds further functionality in the form of a µITRON compatibility layer. Creating a new configuration typically
involves specifying a template as well as a target, resulting in a configuration that can be built and linked with the application
code and that will run on the actual hardware. It is then possible to fine-tune configuration options to produce something that
better matches the specific requirements of the application.

Properties

The component framework needs a certain amount of information about each option. For example it needs to know what the
legal values are, what the default should be, where to find the on-line documentation if the user needs to consult that in order to
make a decision, and so on. These are all properties of the option. Every option (including components and packages) consists
of a name and a set of properties.

Consequences

Choices must have consequences. For an eCos configuration the main end product is a library that can be linked with application
code, so the consequences of a user choice must affect the build process. This happens in two main ways. First, options can affect
which files get built and end up in the library. Second, details of the current option settings get written into various configuration
header files using C preprocessor #define directives, and package source code can #include these configuration headers
and adapt accordingly. This allows options to affect a package at a very fine grain, at the level of individual lines in a source
file if desired. There may be other consequences as well, for example there are options to control the compiler flags that get
used during the build process.

2

Overview

Constraints
Configuration choices are not independent. The C library can provide thread-safe implementations of functions like rand,
but only if the kernel provides support for per-thread data. This is a constraint: the C library option has a requirement on the
kernel. A typical configuration involves a considerable number of constraints, of varying complexity: many constraints are
straightforward, option A requires option B, or option C precludes option D. Other constraints can be more complicated, for
example option E may require the presence of a kernel scheduler but does not care whether it is the bitmap scheduler, the
mlqueue scheduler, or something else.

Another type of constraint involves the values that can be used for certain options. For example there is a kernel option related
to the number of scheduling levels, and there is a legal values constraint on this option: specifying zero or a negative number
for the number of scheduling levels makes no sense.

Conflicts
As the user manipulates options it is possible to end up with an invalid configuration, where one or more constraints are not
satisfied. For example if kernel per-thread data is disabled but the C library's thread-safety options are left enabled then there
are unsatisfied constraints, also known as conflicts. Such conflicts will be reported by the configuration tools. The presence
of conflicts does not prevent users from attempting to build eCos, but the consequences are undefined: there may be compile-
time failures, there may be link-time failures, the application may completely fail to run, or the application may run most of the
time but once in a while there will be a strange failure… Typically users will want to resolve all conflicts before continuing.

To make things easier for the user, the configuration tools contain an inference engine. This can examine a conflict in a particular
configuration and try to figure out some way of resolving the conflict. Depending on the particular tool being used, the inference
engine may get invoked automatically at certain times or the user may need to invoke it explicitly. Also depending on the tool,
the inference engine may apply any solutions it finds automatically or it may request user confirmation.

CDL
The configuration tools require information about the various options provided by each package, their consequences and
constraints, and other properties such as the location of on-line documentation. This information has to be provided in the
form of CDL scripts. CDL is short for Component Definition Language, and is specifically designed as a way of describing
configuration options.

A typical package contains the following:

1. Some number of source files which will end up in a library. The application code will be linked with this library to produce
an executable. Some source files may serve other purposes, for example to provide a linker script.

2. Exported header files which define the interface provided by the package.

3. On-line documentation, for example reference pages for each exported function.

4. Some number of test cases, shipped in source format, allowing users to check that the package is working as expected on
their particular hardware and in their specific configuration.

5. One or more CDL scripts describing the package to the configuration system.

Not all packages need to contain all of these. For example some packages such as device drivers may not provide a new
interface, instead they just provide another implementation of an existing interface. However all packages must contain a CDL
script that describes the package to the configuration tools.

Component Repository
All eCos installations include a component repository. This is a directory structure where all the packages get installed. The
component framework comes with an administration tool that allows new packages or new versions of a package to be installed,
old packages to be removed, and so on. The component repository includes a simple database, maintained by the administration
tool, which contains details of the various packages.

3

Overview

Generally application developers do not need to modify anything inside the component repository, except by means of the
administration tool. Instead their work involves separate build and install trees. This allows the component repository to be
treated as a read-only resource that can be shared by multiple projects and multiple users. Component writers modifying one
of the packages do need to manipulate files in the component repository.

Why Configurability?
The eCos component framework places a great deal of emphasis on configurability. The fundamental goal is to allow large parts
of embedded applications to be constructed from re-usable software components, which does not a priori require that those
components be highly configurable. However embedded application development often involves some serious constraints.

Many embedded applications have to work with very little memory, to keep down manufacturing costs. The final application
image that will get blown into EPROM's or used to manufacture ROMs should contain only the code that is absolutely necessary
for the application to work, and nothing else. If a few tens of kilobytes are added unnecessarily to a typical desktop application
then this is regrettable, but is quite likely to go unnoticed. If an embedded application does not fit on the target hardware
then the problem is much more serious. The component framework must allow users to configure the components so that any
unnecessary functionality gets removed.

Many embedded applications need deterministic behavior so that they can meet real-time requirements. Such deterministic
behavior can often be provided, but at a cost in terms of code size, slower algorithms, and so on. Other applications have no
such real-time requirements, or only for a small part of the overall system, and the bulk of the system should not suffer any
penalties. Again the component framework must allow the users control over the timing behavior of components.

Embedded systems tend to be difficult to debug. Even when it is possible to get information out of the target hardware by
means other than flashing an LED, the more interesting debugging problems are likely to be timing-related and hence very hard
to reproduce and track down. The re-usable components can provide debugging assistance in various ways. They can provide
functionality that can be exploited by source level debuggers such as gdb, for example per-thread debugging information. They
can also contain various assertions so that problems can be detected early on, tracing mechanisms to figure out what happened
before the assertion failure, and so on. Of course all of these involve overheads, especially code size, and affect the timing.
Allowing users to control which debugging features are enabled for any given application build is very desirable.

However, although it is desirable for re-usable components to provide appropriate configuration options this is not required. It
is possible to produce a package which does not provide a single configuration option — although the user still gets to choose
whether or not to use the package. In such cases it is still necessary to provide a minimal CDL script, but its main purpose
would be to integrate the package with the component framework's build system.

Approaches to Configurability
The purpose of configurability is to control the behavior of components. A scheduler component may or may not support time
slicing; it may or may not support multiple priorities; it may or may not perform error checking on arguments passed to the
scheduler routines. In the context of a desktop application a button widget may contain some text or it may contain a picture;
the text may be displayed in a variety of fonts; the foreground and background color may vary. When an application uses
a component there must be some way of specifying the desired behavior. The component writer has no way of knowing in
advance exactly how a particular component will end up being used.

One way to control the behavior is at run time. The application creates an instance of a button object, and then instructs this
object to display either text or a picture. No special effort by the application developer is required, since a button can always
support all desired behavior. There is of course a major disadvantage in terms of the size of the final application image: the code
that gets linked with the application has to provide support for all possible behavior, even if the application does not require it.

Another approach is to control the behavior at link-time, typically by using inheritance in an object-oriented language. The
button library provides an abstract base class Button and derived classes TextButton and PictureButton. If an
application only uses text buttons then it will only create objects of type TextButton, and the code for the PictureButton
class does not get used. In many cases this approach works rather well and reduces the final image size, but there are limitations.
The main one is that you can only have so many derived classes before the system gets unmanageable: a derived class
TextButtonUsingABorderWidthOfOnePlusAWhiteBackgroundAndBlackForegroundAndATwelvePointTimesFontAndNoErrorCheckingOrAssertions
is not particularly sensible as far as most application developers are concerned.

4

Overview

The eCos component framework allows the behavior of components to be controlled at an even earlier time: when the
component source code gets compiled and turned into a library. The button component could provide options, for example an
option that only text buttons need to be supported. The component gets built and becomes part of a library intended specifically
for the application, and the library will contain only the code that is required by this application and nothing else. A different
application with different requirements would need its own version of the library, configured separately.

In theory compile-time configurability should give the best possible results in terms of code size, because it allows code to be
controlled at the individual statement level rather than at the function or object level. Consider an example more closely related
to embedded systems, a package to support multi-threading. A standard routine within such a package allows applications to kill
threads asynchronously: the POSIX routine for this is pthread_cancel; the equivalent routine in µITRON is ter_tsk.
These routines themselves tend to involve a significant amount of code, but that is not the real problem: other parts of the
system require extra code and data for the kill routine to be able to function correctly. For example if a thread is blocked while
waiting on a mutex and is killed off by another thread then the kill operation may have to do two things: remove the thread
from the mutex's queue of waiting threads; and undo the effects, if any, of priority inheritance. The implementation requires
extra fields in the thread data structure so that the kill routine knows about the thread's current state, and extra code in the
mutex routines to fill in and clear these extra fields correctly.

Most embedded applications do not require the ability to kill off a thread asynchronously, and hence the kill routine will not
get linked into the final application image. Without compile-time configurability this would still mean that the mutex code and
similar parts of the system contain code and data that serve no useful purpose in this application. The eCos approach allows
the user to select that the thread kill functionality is not required, and all the components can adapt to this at compile-time. For
example the code in the mutex lock routine contains statements to support the killing of threads, but these statements will only
get compiled in if that functionality is required. The overall result is that the final application image contains only the code and
data that is really needed for the application to work, and nothing else.

Of course there are complications. To return to the button example, the application code might only use text buttons directly,
but it might also use some higher-level widget such as a file selector and this file selector might require buttons with pictures.
Therefore the button code must still be compiled to support pictures as well as text. The configuration tools must be aware of
the dependencies between components and ensure that the internal constraints are met, as well as the external requirements of
the application code. An area of particular concern is conflicting requirements: a button component might be written in such
a way that it can only support either text buttons or picture buttons, but not both in one application; this would represent a
weakness in the component itself rather than in the component framework as a whole.

Compile-time configurability is not intended to replace the other approaches but rather to complement them. There will be
times when run-time selection of behavior is desirable: for example an application may need to be able to change the baud
rate of a serial line, and the system must then provide a way of doing this at run-time. There will also be times when link-
time selection is desirable: for example a C library might provide two different random number routines rand and lrand48;
these do not affect other code so there is no good reason for the C library component not to provide both of these, and allow
the application code to use none, one, or both of them as appropriate; any unused functions will just get eliminated at link-
time. Compile-time selection of behavior is another option, and it can be the most powerful one of the three and the best suited
to embedded systems development.

Degrees of Configurability
Components can support configurability in varying degrees. It is not necessary to have any configuration options at all,
and the only user choice is whether or not to load a particular package. Alternatively it is possible to implement highly-
configurable code. As an example consider a typical facility that is provided by many real-time kernels, mutex locks. The
possible configuration options include:

1. If no part of the application and no other component requires mutexes then there is no point in having the mutex code
compiled into a library at all. This saves having to compile the code. In addition there will never be any need for the user to
configure the detailed behavior of mutexes. Therefore the presence of mutexes is a configuration option in itself.

2. Even if the application does make use of mutexes directly or indirectly, this does not mean that all mutex functions have to
be included. The minimum functionality consists of lock and unlock functions. However there are variants of the locking
primitive such as try-lock and try-with-timeout which may or may not be needed.

Generally it will be harmless to compile the try-lock function even if it is not actually required, because the function will
get eliminated at link-time. Some users might take the view that the try-lock function should never get compiled in unless it

5

Overview

is actually needed, to reduce compile-time and disk usage. Other users might argue that there are very few valid uses for a
try-lock function and it should not be compiled by default to discourage incorrect uses. The presence of a try-lock function
is a possible configuration option, although it may be sensible to default it to true.

The try-with-timeout variant is more complicated because it adds a dependency: the mutex code will now rely on some other
component to provide a timer facility. To make things worse the presence of this timer might impact other components,
for example it may now be necessary to guard against timer interrupts, and thus have an insidious effect on code size. The
presence of a lock-with-timeout function is clearly a sensible configuration option, but the default value is less obvious.
If the option is enabled by default then the final application image may end up with code that is not actually essential. If
the option is disabled by default then users will have to enable the option somehow in order to use the function, implying
more effort on the part of the user. One possible approach is to calculate the default value based on whether or not a timer
component is present anyway.

3. The application may or may not require the ability to create and destroy mutexes dynamically. For most embedded systems
it is both less error-prone and more efficient to create objects like mutexes statically. Dynamic creation of mutexes can be
implemented using a pre-allocated pool of mutex objects, involving some extra code to manipulate the pool and an additional
configuration option to define the size of the pool. Alternatively it can be implemented using a general-purpose memory
allocator, involving quite a lot of extra code and configuration options. However this general-purpose memory allocator
may be present anyway to support the application itself or some other component. The ability to create and destroy mutexes
dynamically is a configuration option, and there may not be a sensible default that is appropriate for all applications.

4. An important issue for mutex locks is the handling of priority inversion, where a high priority thread is prevented from
running because it needs a lock owned by a lower priority thread. This is only an issue if there is a scheduler with multiple
priorities: some systems may need multi-threading and hence synchronization primitives, but a single priority level may
suffice. If priority inversion is a theoretical possibility then the application developer may still want to ignore it because the
application has been designed such that the problem cannot arise in practice. Alternatively the developer may want some sort
of exception raised if priority inversion does occur, because it should not happen but there may still be bugs in the code. If
priority inversion can occur legally then there are three main ways of handling it: priority ceilings, priority inheritance, and
ignoring the problem. Priority ceilings require little code but extra effort on the part of the application developer. Priority
inheritance requires more code but is automatic. Ignoring priority inversion may or may not be acceptable, depending on the
application and exactly when priority inversion can occur. Some of these choices involve additional configuration options,
for example there are different ways of raising an exception, and priority inheritance may or may not be applied recursively.

5. As a further complication some mutexes may be hidden inside a component rather than being an explicit part of the
application. For example, if the C library is configured to provide a malloc call then there may be an associated mutex
to make the function automatically thread-safe, with no need for external locking. In such cases the memory allocation
component of the C library can impose a constraint on the kernel, requiring that mutexes be provided. If the user attempts
to disable mutexes anyway then the configuration tools will report a conflict.

6. The mutex code should contain some general debugging code such as assertions and tracing. Usually such debug support
will be enabled or disabled at a coarse level such as the entire system or everything inside the kernel, but sometimes it will
be desirable to enable the support more selectively. One reason would be memory requirements: the target may not have
enough memory to hold the system if all debugging is enabled. Another reason is if most of the system is working but there
are a few problems still to resolved; enabling debugging in the entire system might change the system's timing behavior
too much, but enabling some debug options selectively can still be useful. There should be configuration options to allow
specific types of debugging to be enabled at a fine-grain, but with default settings inherited from an enclosing component
or from global settings.

7. The mutex code may contain specialized code to interact with a debugging tool running on the host. It should be possible to
enable or disable this debugging code, and there may be additional configuration options controlling the detailed behavior.

Altogether there may be something like ten to twenty configuration options that are specific to the mutex code. There may be
a similar number of additional options related to assertions and other debug facilities. All of the options should have sensible
default values, possibly fixed, possibly calculated depending on what is happening elsewhere in the configuration. For example
the default setting for an assertion option should generally inherit from a kernel-wide assertion control option, which in turn
inherits from a global option. This allows users to enable or disable assertions globally or at a more fine-grained level, as desired.

Different components may be configurable to different degrees, ranging from no options at all to the fine-grained configurability
of the above mutex example (or possibly even further). It is up to component writers to decide what options should be provided
and how best to serve the needs of application developers who want to use that component.

6

Overview

Warnings
Large parts of eCos were developed concurrently with the development of the configuration technology, or in some cases
before design work on that technology was complete. As a consequence the various eCos packages often make only limited
use of the available functionality. This situation is expected to change over time. It does mean that many of the descriptions in
this guide will not correspond exactly to how the eCos packages work right now, but rather to how they could work. Some of
the more extreme discrepancies such as the location of on-line documentation in the component repository will be mentioned
in the appropriate places in the guide.

A consequence of this is that developers of new components can look at existing CDL scripts for examples, and discover
discrepancies between what is recommended in this guide and what actually happens at present. In such cases this guide should
be treated as authoritative.

It is also worth noting that the current component framework is not finished. Various parts of this guide will refer to possible
changes and enhancements in future versions. Examining the source code of the configuration tools may reveal hints about
other likely developments, and there are many more possible enhancements which only exist at a conceptual level right now.

7

Chapter 2. Package Organization
For a package to be usable in the eCos component framework it must conform to certain rules imposed by that framework.
Packages must be distributed in a form that is understood by the component repository administration tool. There must be a
top-level CDL script which describes the package to the component framework. There are certain limitations related to how
a package gets built, so that the package can still be used in a variety of host environments. In addition to these rules, the
component framework provides a number of guidelines. Packages do not have to conform to the guidelines, but sticking to
them can simplify certain operations.

This chapter deals with the general organization of a package, for example how to distinguish between private and exported
header files. Chapter 3, The CDL Language describes the CDL language. Chapter 4, The Build Process details the build process.

Packages and the Component Repository
All eCos installations include a component repository. This is a directory structure for all installed packages. The component
framework comes with an administration tool that allows new packages or new versions of a package to be installed, old
packages to be removed, and so on. The component repository includes a simple database, maintained by the administration
tool, which contains details of the various packages.

Each package has its own little directory hierarchy within the component repository. Keeping several packages in a single
directory is illegal. The error, infra and kernel packages all live at the top-level of the repository. For other types of packages
there are some pre-defined directories: compat is used for compatibility packages, which implement other interfaces such as
µITRON or POSIX using native eCos calls; hal is used for packages that port eCos to different architectures or platforms,
and this directory is further organized on a per-architecture basis; io is intended for device drivers; language is used for
language support libraries, for example the C library. There are no strict rules defining where new packages should get installed.
Obviously if an existing top-level directory such as compat is applicable then the new package should go in there. If a new
category is desirable then it is possible to create a new sub-directory in the component repository. For example, an organization
planning to release a number of eCos packages may want them all to appear below a sub-directory corresponding to the
organization's name — in the hope that the name will not change too often. It is possible to add new packages directly to the
top-level of the component repository, but this should be avoided.

The ecos.db file holds the component repository database and is managed by the administration tool. The various configuration
tools read in this file when they start-up to obtain information about the various packages that have been installed. When
developing a new package it is necessary to add some information to the file, as described in the section called “Updating the
ecos.db database”. The templates directory holds various configuration templates.

Note

Earlier releases of eCos came with two separate files, targets and packages. The ecos.db database replaces
both of these.

Caution

The current ecos.db database does not yet provide all of the information needed by the component framework. Its
format is subject to change in future releases, and the file may be replaced completely if necessary. There are a
number of other likely future developments related to the component repository and the database. The way targets

8

Package Organization

are described is subject to change. Sometimes it is desirable for component writers to do their initial development
in a directory outside the component repository, but there is no specific support in the framework for that yet.

Package Versioning
Below each package directory there can be one or more version sub-directories, named after the versions. This is a requirement
of the component framework: it must be possible for users to install multiple versions of a package and select which one to use
for any given application. This has a number of advantages to users: most importantly it allows a single component repository
to be shared between multiple users and multiple projects, as required; also it facilitates experiments, for example it is relatively
easy to try out the latest version of some package and see if it makes any difference. There is a potential disadvantage in
terms of disk space. However since eCos packages generally consist of source code intended for small embedded systems, and
given typical modern disk sizes, keeping a number of different versions of a package installed will usually be acceptable. The
administration tool can be used to remove versions that are no longer required.

The version current is special. Typically it corresponds to the very latest version of the sources, obtained by anonymous
CVS. These sources may change frequently, unlike full releases which do not change (or only when patches are produced).
Component writers may also want to work on the current version.

All other subdirectories of a package correspond to specific releases of that package. The component framework allows users
to select the particular version of a package they want to use, but by default the most recent one will be used. This requires some
rules for ordering version numbers, a difficult task because of the wide variety of ways in which versions can be identified.

1. The version current is always considered to be the most recent version.

2. If the first character of both strings are either v or V, these are skipped because it makes little sense to enforce case sensitivity
here. Potentially this could result in ambiguity if there are two version directories V1.0 and v1.0, but this will match the
confusion experienced by any users of such a package. However if two subsequent releases are called V1.0 and v1.1, e.g.
because of a minor mix-up when making the distribution file, then the case difference is ignored.

3. Next the two version strings are compared one character at a time. If both strings are currently at a digit then a string to
number conversion takes place, and the resulting numbers are compared. For example v10 is a more recent release than
v2. If the two numbers are the same then processing continues, so for v2b and v2c the version comparison code would
move on to b and c.

4. The characters dot ., hyphen - and underscore _ are treated as equivalent separators, so if one release goes out as v1_1
and the next goes out as v1.2 the separator has no effect.

5. If neither string has yet terminated but the characters are different, ASCII comparison is used. For example V1.1b is more
recent than v1.1alpha.

6. If one version string terminates before the other, the current character determines which is the more recent. If the other string
is currently at a separator character, for example v1.3.1 and v1.3, then the former is assumed to be a minor release and
hence more recent than the latter. If the other string is not at a separator character, for example v1.3beta, then it is treated
as an experimental version of the v1.3 release and hence older.

7. There is no special processing of dates, so with two versions ss-20000316 and ss-20001111 the numerical values
20001111 and 20000316 determine the result: larger values are more recent. It is suggested that the full year be used
in such cases rather than a shorthand like 00, to avoid Y2100 problems.

8. There is no limit on how many levels of versioning are used, so there could in theory be a v3.1.4.1.5.9.2.7 release
of a package. However this is unlikely to be of benefit to typical users of a package.

The version comparison rules of the component framework may not be suitable for every version numbering scheme in
existence, but they should cope with many common cases.

9

Package Organization

Caution

There are some issues still to be resolved before it is possible to combine the current sources available via
anonymous CVS and full releases of eCos and additional packages in a single component repository. The first
problem relates to the ecos.db database: if a new package is added via the CVS repository then this requires a
database update, but the administration tool is bypassed. The second problem arises if an organization chooses
to place its component repository under source code control using CVS, in which case different directories will
belong to different CVS servers. These issues will be addressed in a future release.

Package Contents and Layout
A typical package contains the following:

1. Some number of source files which will end up in a library. The application code will be linked with this library to produce
an executable. Some source files may serve other purposes, for example to provide a linker script.

2. Exported header files which define the interface provided by the package.

3. On-line documentation, for example reference pages for each exported function.

4. Some number of test cases, shipped in source format, allowing users to check that the package is working as expected on
their particular hardware and in their specific configuration.

5. One or more CDL scripts describing the package to the configuration system.

It is also conventional to have a per-package ChangeLog file used to keep track of changes to that package. This is especially
valuable to end users of the package who may not have convenient access to the source code control system used to manage
the master copy of the package, and hence cannot find out easily what has changed. Often it can be very useful to the main
developers as well.

Any given packages need not contain all of these. It is compulsory to have at least one CDL script describing the package,
otherwise the component framework would be unable to process it. Some packages may not have any source code: it is possible
to have a package that merely defines a common interface which can then be implemented by several other packages, especially
in the context of device drivers; however it is still common to have some code in such packages to avoid replicating shareable
code in all of the implementation packages. Similarly it is possible to have a package with no exported header files, just source
code that implements an existing interface: for example an ethernet device driver might just implement a standard interface
and not provide any additional functionality. Packages do not need to come with any on-line documentation, although this may
affect how many people will want to use the package. Much the same applies to per-package test cases.

The component framework has a recommended per-package directory layout which splits the package contents on a functional
basis:

For example, if a package has an include sub-directory then the component framework will assume that all header files in
and below that directory are exported header files and will do the right thing at build time. Similarly if there is doc property
indicating the location of on-line documentation then the component framework will first look in the doc sub-directory.

This directory layout is just a guideline, it is not enforced by the component framework. For simple packages it often makes
more sense to have all of the files in just one directory. For example a package could just contain the files hello.cxx,
hello.h, hello.html and hello.cdl. By default hello.h will be treated as an exported header file, although this
can be overridden with the include_files property. Assuming there is a doc property referring to hello.html and there is
no doc sub-directory then the tools will search for this file relative to the package's top-level and everything will just work.
Much the same applies to hello.cxx and hello.cdl.

10

Package Organization

Tip

Older versions of the eCos build system only supported packages that followed the directory structure exactly.
Hence certain core packages such as error implement the full directory structure, even though that is a
particularly simple package and the full directory structure is inappropriate. Component writers can decide for
themselves whether or not the directory structure guidelines are appropriate for their package.

Outline of the Build Process
The full build process is described in Chapter 4, The Build Process, but a summary is appropriate here. A build involves three
directory structures:

1. The component repository. This is where all the package source code is held, along with CDL scripts, documentation, and
so on. For build purposes a component repository is read-only. Application developers will only modify the component
repository when installing or removing packages, via the administration tool. Component writers will typically work on just
one package in the component repository.

2. The build tree. Each configuration has its own build tree, which can be regenerated at any time using the configuration's
ecos.ecc savefile. The build tree contains only intermediate files, primarily object files. Once a build is complete the
build tree contains no information that is useful for application development and can be wiped, although this would slow
down any rebuilds following changes to the configuration.

3. The install tree. This is populated during a build, and contains all the files relevant to application development. There will be
a lib sub-directory which typically contains libtarget.a, a linker script, start-up code, and so on. There will also be an
include sub-directory containing all the header files exported by the various packages. There will also be a include/
pkgconf sub-directory containing various configuration header files with #define's for the options. Typically the
install tree is created within the build tree, but this is not a requirement.

The build process involves the following steps:

1. Given a configuration, the component framework is responsible for creating all the directories in the build and install trees. If
these trees already exist then the component framework is responsible for any clean-ups that may be necessary, for example
if a package has been removed then all related files should be expunged from the build and install trees. The configuration
header files will be generated at this time. Depending on the host environment, the component framework will also generate
makefiles or some other way of building the various packages. Every time the configuration is modified this step needs to
be repeated, to ensure that all option consequences take effect. Care is taken that this will not result in unnecessary rebuilds.

Note

At present this step needs to be invoked manually. In a future version the generated makefile may if desired
perform this step automatically, using a dependency on the ecos.ecc savefile.

2. The first step in an actual build is to make sure that the install tree contains all exported header files. All compilations will
use the install tree's include directory as one of the places to search for header files.

3. All source files relevant to the current configuration get compiled. This involves a set of compiler flags initialized on a
per-target basis, with each package being able to modify these flags, and with the ability for the user to override the flags
as well. Care has to be taken here to avoid inappropriate target-dependencies in packages that are intended to be portable.
The component framework has built-in knowledge of how to handle C, C++ and assembler source files — other languages
may be added in future, as and when necessary. The compile property is used to list the files that should get compiled. All
object files end up in the build tree.

4. Once all the object files have been built they are collected into a library, typically libtarget.a, which can then be linked
with application code. The library is generated in the install tree.

5. The component framework provides support for custom build steps, using the make_object and make properties. The results
of these custom build steps can either be object files that should end up in a library, or other files such as a linker script. It
is possible to control the order in which these custom build steps take place, for example it is possible to run a particular
build step before any of the compilations happen.

11

Package Organization

Configurable Source Code
All packages should be totally portable to all target hardware (with the obvious exceptions of HAL and device driver packages).
They should also be totally bug-free, require the absolute minimum amount of code and data space, be so efficient that cpu time
usage is negligible, and provide lots of configuration options so that application developers have full control over the behavior.
The configuration options are optional only if a package can meet the requirements of every potential application without any
overheads. It is not the purpose of this guide to explain how to achieve all of these requirements.

The eCos component framework does have some important implications for the source code: compiler flag dependencies;
package interfaces vs. implementations; and how configuration options affect source code.

Compiler Flag Dependencies

Wherever possible component writers should avoid dependencies on particular compiler flags. Any such dependencies are
likely to impact portability. For example, if one package needs to be built in big-endian mode and another package needs to
be built in little-endian mode then usually it will not be possible for application developers to use both packages at the same
time; in addition the application developer is no longer given a choice in the matter. It is far better for the package source code
to adapt the endianness at compile-time, or possibly at run-time although that will involve code-size overheads.

Note

A related issue is that the current support for handling compiler flags in the component framework is still limited
and incapable of handling flags at a very fine-grain. The support is likely to be enhanced in future versions of the
framework, but there are non-trivial problems to be resolved.

Package Interfaces and Implementations

The component framework provides encapsulation at the package level. A package A has no way of accessing the
implementation details of another package B at compile-time. In particular, if there is a private header file somewhere in
a package's src sub-directory then this header file is completely invisible to other packages. Any attempts to cheat by
using relative pathnames beginning with ../.. are generally doomed to failure because of the presence of package version
directories. There are two ways in which one package can affect another: by means of the exported header files, which define
a public interface; or via the CDL scripts.

This encapsulation is a deliberate aspect of the overall eCos component framework design. In most cases it does not cause
any problems for component writers. In some cases enforcing a clean separation between interface and implementation details
can improve the code. Also it reduces problems when a package gets upgraded: component writers are free to do pretty much
anything on the implementation side, including renaming every single source file; care has to be taken only with the exported
header files and with the CDL data, because those have the potential of impacting other packages. Application code is similarly
unable to access package implementation details, only the exported interface.

Very occasionally the inability of one package to see implementation details of another does cause problems. One example
occurs in HAL packages, where it may be desirable for the architectural, variant and platform HAL's to share some information
that should not be visible to other packages or to application code. This may be addressed in the future by introducing the
concept of friend packages, just as a C++ class can have friend functions and classes which are allowed special access
to a class internals. It is not yet clear whether such cases are sufficiently frequent to warrant introducing such a facility.

Source Code and Configuration Options

Configurability usually involves source code that needs to implement different behavior depending on the settings of
configuration options. It is possible to write packages where the only consequence associated with various configuration options
is to control what gets built, but this approach is limited and does not allow for fine-grained configurability. There are three
main ways in which options could affect source code at build time:

1. The component code can be passed through a suitable preprocessor, either an existing one such as m4 or a new one specially
designed with configurability in mind. The original sources would reside in the component repository and the processed
sources would reside in the build tree. These processed sources can then be compiled in the usual way.

12

Package Organization

This approach has two main advantages. First, it is independent from the programming language used to code the
components, provided reasonable precautions are taken to avoid syntax clashes between preprocessor statements and actual
code. This would make it easier in future to support languages other than C and C++. Second, configurable code can make
use of advanced preprocessing facilities such as loops and recursion. The disadvantage is that component writers would
have to learn about a new preprocessor and embed appropriate directives in the code. This makes it much more difficult to
turn existing code into components, and it involves extra training costs for the component writers.

2. Compiler optimizations can be used to elide code that should not be present, for example:

…
if (CYGHWR_NUMBER_UARTS > 0) {
 …
}
…

If the compiler knows that CYGHWR_NUMBER_UARTS is the constant number 0 then it is a trivial operation to get rid of
the unnecessary code. The component framework still has to define this symbol in a way that is acceptable to the compiler,
typically by using a const variable or a preprocessor symbol. In some respects this is a clean approach to configurability,
but it has limitations. It cannot be used in the declarations of data structures or classes, nor does it provide control over
entire functions. In addition it may not be immediately obvious that this code is affected by configuration options, which
may make it more difficult to understand.

3. Existing language preprocessors can be used. In the case of C or C++ this would be the standard C preprocessor, and
configurable code would contain a number of #ifdef and #if statements.

#if (CYGHWR_NUMBER_UARTS > 0)
 …
#endif

This approach has the big advantage that the C preprocessor is a technology that is both well-understood and widely used.
There are also disadvantages: it is not directly applicable to components written in other languages such as Java (although it
is possible to use the C preprocessor as a stand-alone program); the preprocessing facilities are rather limited, for example
there is no looping facility; and some people consider the technology to be ugly. Of course it may be possible to get around
the second objection by extending the preprocessor that is used by gcc and g++.

The current component framework generates configuration header files with C preprocessor #define's for each option
(typically, there various properties which can be used to control this). It is up to component writers to decide whether to use
preprocessor #ifdef statements or language constructs such as if. At present there is no support for languages which do not
involve the C preprocessor, although such support can be added in future when the need arises.

Exported Header Files
A package's exported header files should specify the interface provided by that package, and avoid any implementation details.
However there may be performance or other reasons why implementation details occasionally need to be present in the exported
headers.

Note

Not all programming languages have the concept of a header file. In some cases the component framework would
need extensions to support packages written in such languages.

Configurability has a number of effects on the way exported header files should be written. There may be configuration options
which affect the interface of a package, not just the implementation. It is necessary to worry about nested #include's
and how this affects package and application builds. A special case of this relates to whether or not exported header files
should #include configuration headers. These configuration headers are exported, but should only be #include'd when
necessary.

Configurable Functionality

Many configuration options affect only the implementation of a package, not the interface. However some options will affect
the interface as well, which means that the options have to be tested in the exported header files. Some implementation choices,

13

Package Organization

for example whether or not a particular function should be inlined, also need to be tested in the header file because of language
limitations.

Consider a configuration option CYGFUN_KERNEL_MUTEX_TIMEDLOCK which controls whether or not a function
cyg_mutex_timedlock is provided. The exported kernel header file cyg/kernel/kapi.h could contain the
following:

#include <pkgconf/kernel.h>
…
#ifdef CYGFUN_KERNEL_MUTEX_TIMEDLOCK
 extern bool cyg_mutex_timedlock(cyg_mutex_t*);
#endif

This is a correct header file, in that it defines the exact interface provided by the package at all times. However is has a number
of implications. First, the header file is now dependent on pkgconf/kernel.h, so any changes to kernel configuration
options will cause cyg/kernel/kapi.h to be out of date, and any source files that use the kernel interface will need
rebuilding. This may affect sources in the kernel package, in other packages, and in application source code. Second, if the
application makes use of this function somewhere but the application developer has misconfigured the system and disabled
this functionality anyway then there will now be a compile-time error when building the application. Note that other packages
should not be affected, since they should impose appropriate constraints on CYGFUN_KERNEL_MUTEX_TIMEDLOCK if they
use that functionality (although of course some dependencies like this may get missed by component developers).

An alternative approach would be:

extern bool cyg_mutex_timedlock(cyg_mutex_t*);

Effectively the header file is now lying about the functionality provided by the package. The first result is that there is no longer
a dependency on the kernel configuration header. The second result is that an application file using the timed-lock function
will now compile, but the application will fail to link. At this stage the application developer still has to intervene, change the
configuration, and rebuild the system. However no application recompilations are necessary, just a relink.

Theoretically it would be possible for a tool to analyze linker errors and suggest possible configuration changes that would
resolve the problem, reducing the burden on the application developer. No such tool is planned in the short term.

It is up to component writers to decide which of these two approaches should be preferred. Note that it is not always possible
to avoid #include'ing a configuration header file in an exported one, for example an option may affect a data structure
rather than just the presence or absence of a function. Issues like this will vary from package to package.

Nested #include's

As a general rule, unnecessary #include's should be avoided. A header file should #include only those header files
which are absolutely needed for it to define its interface. Any additional #include's make it more likely that package or
application source files become dependent on configuration header files and will get rebuilt unnecessarily when there are minor
configuration changes.

Including Configuration Headers

Exported header files should avoid #include'ing configuration header files unless absolutely necessary, to avoid
unnecessary rebuilding of both application code and other packages when there are minor configuration changes. A #include
is needed only when a configuration option affects the exported interface, or when it affects some implementation details which
is controlled by the header file such as whether or not a particular function gets inlined.

There are a couple of ways in which the problem of unnecessary rebuilding could be addressed. The first would require more
intelligent handling of header file dependency handling by the tools (especially the compiler) and the build system. This would
require changes to various non-eCos tools. An alternative approach would be to support finer-grained configuration header
files, for example there could be a file pkgconf/libc/inline.h controlling which functions should be inlined. This
could be achieved by some fairly simple extensions to the component framework, but it makes it more difficult to get the
package header files and source code correct: a C preprocessor #ifdef directive does not distinguish between a symbol not
being defined because the option is disabled, or the symbol not being defined because the appropriate configuration header file
has not been #include'd. It is likely that a cross-referencing tool would have to be developed first to catch problems like
this, before the component framework could support finer-grained configuration headers.

14

Package Organization

Package Documentation
On-line package documentation should be in HTML format. The component framework imposes no special limitations:
component writers can decide which version of the HTML specification should be followed; they can also decide on how best
to cope with the limitations of different browsers. In general it is a good idea to keep things simple.

Test Cases
Packages should normally come with one or more test cases. This allows application developers to verify that a given package
works correctly on their particular hardware and in their particular configuration, making it slightly more likely that they will
attempt to find bugs in their own code rather than automatically blaming the component writers.

At the time of writing the application developer support for building and running test cases via the component framework
is under review and likely to change. Currently each test case should consist of a single C or C++ source file that can be
compiled with the package's set of compiler flags and linked like any application program. Each test case should use the testing
API defined by the infrastructure. A magically-named calculated configuration option of the form CYGPKG_<PACKAGE-
NAME>_TESTS lists the test cases.

Host-side Support
On occasion it would be useful for an eCos package to be shipped with host-side support. This could take the form of an
additional tool needed to build that package. It could be an application intended to communicate with the target-side package
code and display monitoring information. It could be a utility needed for running the package test cases, especially in the
case of device drivers. The component framework does not yet provide any such support for host-side software, and there are
obvious issues related to portability to the different machines that can be used for hosts. This issue may get addressed in some
future release. In some cases custom build steps can be subverted to do things on the host side rather than the target side, but
this is not recommended.

Making a Package Distribution
Developers of new eCos packages are advised to distribute their packages in the form of eCos package distribution files.
Packages distributed in this format may be added to existing eCos component repositories in a robust manner using the Package
Administration Tool. This chapter describes the format of package distribution files and details how to prepare an eCos package
for distribution in this format.

The eCos package distribution file format
eCos package distribution files are gzipped GNU tar archives which contain both the source code for one or more eCos packages
and a data file containing package information to be added to the component repository database. The distribution files are
subject to the following rules:

a. The data file must be named pkgadd.db and must be located in the root of the tar archive. It must contain data in a
format suitable for appending to the eCos repository database (ecos.db). the section called “Updating the ecos.db database”
describes this data format. Note that a database consistency check is performed by the eCos Administration Tool when
pkgadd.db has been appended to the database. Any new target entries which refer to unknown packages will be removed
at this stage.

b. The package source code must be placed in one or more <package-path>/<version> directories in the tar archive,
where each <package-path> directory path is specified as the directory attribute of one of the packages entries in
pkgadd.db.

c. An optional license agreement file named pkgadd.txt may be placed in the root of the tar archive. It should contain text
with a maximum line length of 79 characters. If this file exists, the contents will be presented to the user during installation
of the package. The eCos Package Administration Tool will then prompt the user with the question "Do you accept
all the terms of the preceding license agreement?". The user must respond "yes" to this prompt
in order to proceed with the installation.

15

Package Organization

d. Optional template files may be placed in one or more templates/<template_name> directories in the tar archive.
Note that such template files would be appropriate only where the packages to be distributed have a complex dependency
relationship with other packages. Typically, a third party package can be simply added to an eCos configuration based on
an existing core template and the provision of new templates would not be appropriate.

e. The distribution file must be given a .epk (not .tar.gz) file extension. The .epk file extension serves to distinguish
eCos package distributions files from generic gzipped GNU tar archives. It also discourages users from attempting to extract
the package from the archive manually. The file browsing dialog of the eCos Package Administration Tool lists only those
files which have a .epk extension.

f. No other files should be present in the archive.

g. Files in the tar archive may use LF or CRLF line endings interchangably. The eCos Administration Tool ensures that the
installed files are given the appropriate host-specific line endings.

h. Binary files may be placed in the archive, but the distribution of object code is not recommended. All binary files must be
given a .bin suffix in addition to any file extension they may already have. For example, the GIF image file myfile.gif
must be named myfile.gif.bin in the archive. The .bin suffix is removed during file extraction and is used to inhibit
the manipulation of line endings by the eCos Administration Tool.

Preparing eCos packages for distribution
Development of new eCos packages or new versions of existing eCos packages will take place in the context of an existing
eCos component repository. This section details the steps involved in extracting new packages from a repository and generating
a corresponding eCos package distribution file for distribution of the packages to other eCos users. The steps required are as
follows:

a. Create a temporary directory $PKGTMP for manipulation of the package distribution file contents and copy the source files
of the new packages into this directory, preserving the relative path to the package. In the case of a new package at mypkg/
current in the repository:

$ mkdir -p $PKGTMP/mypkg
$ cp -p -R $ECOS_REPOSITORY/mypkg/current $PKGTMP/mypkg

Where more than one package is to be distributed in a single package distribution file, copy each package in the above
manner. Note that multiple packages distributed in a single package distribution file cannot be installed separately. Where
such flexibility is required, distribution of each new package in separate package distribution files is recommended.

b. Copy any template files associated with the distributed packages into the temporary directory, preserving the relative path
to the template. For example:

$ mkdir -p $PKGTMP/templates
$ cp -p -R $ECOS_REPOSITORY/templates/mytemplate $PKGTMP/templates

c. Remove any files from the temporary directory hierarchy which you do not want to distribute with the packages (eg object
files, CVS directories).

d. Add a .bin suffix to the name of any binary files. For example, if the packages contains GIF image files (*.gif) for
documentation purposes, such files must be renamed to *.gif.bin as follows:

$ find $PKGTMP -type f -name '*.gif' -exec mv {} {}.bin ';'

The .bin suffix is removed during file extraction and is used to inhibit the manipulation of line endings by the eCos
Package Administration Tool.

e. Extract the package records for the new packages from the package database file at $ECOS_REPOSITORY/ecos.db and
create a new file containing these records at $PKGTMP/pkgadd.db (in the root of the temporary directory hierarchy).
Any target records which reference the distributed packages must also be provided in pkgadd.db.

f. Rename the version directories under $PKGTMP (typically current during development) to reflect the versions of the
packages you are distributing. For example, version 1.0 of a package may use the version directory name v1_0:

$ cd $PKGTMP/mypkg

16

Package Organization

$ mv current v1_0

the section called “Package Versioning” describes the version naming conventions.

g. Rename any template files under $PKGTMP (typically current.ect during development) to reflect the version of the
template you are distributing. For example, version 1.0 of a template may use the filename v1_0.ect:

$ cd $PKGTMP/templates/mytemplate
$ mv current.ect v1_0.ect

It is also important to edit the contents of the template file, changing the version of each referenced package to match that of
the packages you are distributing. This step will eliminate version warnings during the subsequent loading of the template.

h. Optionally create a licence agreement file at $PKGTMP/pkgadd.txt containing the licensing terms under which you are
distributing the new packages. Limit each line in this file to a maximum of 79 characters.

i. Create a GNU tar archive of the temporary directory hierarchy. By convention, this archive would have a name of the form
<package_name>-<version>:

$ cd $PKGTMP
$ tar chf mypkg-1.0.tar *

Note that non-GNU version of tar may create archive files which exhibit subtle incompatibilities with GNU tar. For this
reason, always use GNU tar to create the archive file. In addition, for a truly portable archive, the archive must not contain
any symbolic references as not all systems support these. The -h (--dereference) flag must therefore be included when
creating the archive to ensure the file the symbolic link points to is archived and not the symbolic link.

j. Compress the archive using gzip and give the resulting file a .epk file extension:

$ gzip mypkg-1.0.tar
$ mv mypkg-1.0.tar.gz mypkg-1.0.epk

The resulting eCos package distribution file (*.epk) is in a compressed format and may be distributed without further
compression.

17

Chapter 3. The CDL Language
The CDL language is a key part of the eCos component framework. All packages must come with at least one CDL script, to
describe that package to the framework. The information in that script includes details of all the configuration options and how
to build the package. Implementing a new component or turning some existing code into an eCos component always involves
writing corresponding CDL. This chapter provides a description of the CDL language. Detailed information on specific parts
of the language can be found in Chapter 5, CDL Language Specification.

Language Overview
A very simple CDL script would look like this:

cdl_package CYGPKG_ERROR {
 display "Common error code support"
 compile strerror.cxx
 include_dir cyg/error
 description "
 This package contains the common list of error and
 status codes. It is held centrally to allow
 packages to interchange error codes and status
 codes in a common way, rather than each package
 having its own conventions for error/status
 reporting. The error codes are modelled on the
 POSIX style naming e.g. EINVAL etc. This package
 also provides the standard strerror() function to
 convert error codes to textual representation."
}

This describes a single package, the error code package, which does not have any sub-components or configuration
options. The package has an internal name, CYGPKG_ERROR, which can be referenced in other CDL scripts using e.g.
requires CYGPKG_ERROR. There will also be a #define for this symbol in a configuration header file. In addition
to the package name, this script provides a number of properties for the package as a whole. The display property provides
a short description. The description property involves a rather longer one, for when users need a bit more information. The
compile and include_dir properties list the consequences of this package at build-time. The package appears to lack any on-
line documentation.

Packages could be even simpler than this. If the package only provides an interface and there are no files to be compiled then
there is no need for a compile property. Alternatively if there are no exported header files, or if the exported header files should
go to the top-level of the install/include directory, then there is no need for an include_dir property. Strictly speaking
the description and display properties are optional as well, although application developers would not appreciate the resulting
lack of information about what the package is supposed to do.

However many packages tend to be a bit more complicated than the error package, containing various sub-components and
configuration options. These are also defined in the CDL scripts and in much the same way as the package. For example, the
following excerpt comes from the infrastructure package:

cdl_component CYGDBG_INFRA_DEBUG_TRACE_ASSERT_BUFFER {
 display "Buffered tracing"
 default_value 1
 active_if CYGDBG_USE_TRACING
 description "
 An output module which buffers output from tracing and
 assertion events. The stored messages are output when an
 assert fires, or CYG_TRACE_PRINT() (defined in
 <cyg/infra/cyg_trac.h>) is called. Of course, there will
 only be stored messages if tracing per se (CYGDBG_USE_TRACING)
 is enabled above."

 cdl_option CYGDBG_INFRA_DEBUG_TRACE_BUFFER_SIZE {
 display "Trace buffer size"
 flavor data
 default_value 32
 legal_values 5 to 65535
 description "

18

The CDL Language

 The size of the trace buffer. This counts the number of
 trace records stored. When the buffer fills it either
 wraps, stops recording, or generates output."
 }
 …
}

Like a cdl_package, a cdl_component has a name and a body. The body contains various properties for that component,
and may also contain sub-components or options. Similarly a cdl_option has a name and a body of properties. This example
lists a number of new properties: default_value, active_if, flavor and legal_values. The meaning of most of these should be
fairly obvious. The next sections describe the various CDL commands and properties.

There is one additional and very important point: CDL is not a completely new language; instead it is implemented as an
extension of the existing Tcl scripting language. The syntax of a CDL script is Tcl syntax, which is described below. In addition
some of the more advanced facilities of CDL involve embedded fragments of Tcl code, for example there is a define_proc
property which specifies some code that needs to be executed when the component framework generates the configuration
header files.

CDL Commands
There are four CDL-related commands which can occur at the top-level of a CDL script: cdl_package, cdl_component,
cdl_option and cdl_interface. These correspond to the basic building blocks of the language (CDL interfaces are
described in the section called “Interfaces”). All of these take the same basic form:

cdl_package <name> {
 …
}
cdl_component <name> {
 …
}
cdl_option <name> {
 …
}
cdl_interface <name> {
 …
}

The command is followed by a name and by a body of properties, the latter enclosed in braces. Packages and components
can contain other entities, so the cdl_package and cdl_component can also have nested commands in their bodies. All
names must be unique within a given configuration. If say the C library package and a TCP/IP stack both defined an option
with the same name then it would not be possible to load both of them into a single configuration. There is a naming convention
which should make accidental name clashes very unlikely.

It is possible for two packages to use the same name if there are no reasonable circumstances under which both packages
could be loaded at the same time. One example would be architectural HAL packages: a given eCos configuration can be used
on only one processor, so the architectural HAL packages CYGPKG_HAL_ARM and CYGPKG_HAL_I386 can re-use option
names; in fact in some cases they are expected to.

Each package has one top-level CDL script, which is specified in the packages ecos.db database entry. Typically the name of
this top-level script is related to the package, so the kernel package uses kernel.cdl, but this is just a convention. The first
command in the top-level script should be cdl_package, and the name used should be the same as in the ecos.db database.
There should be only one cdl_package command per package.

The various CDL entities live in a hierarchy. For example the kernel package contains a scheduling component, a
synchronization primitives component, and a number of others. The synchronization component contains various options such
as whether or not mutex priority inheritance is enabled. There is no upper bound on how far components can be nested, but it is
rarely necessary to go more than three or four levels deeper than the package level. Since the naming convention incorporates
bits of the hierarchy, this has the added advantage of keeping the names down to a more manageable size.

The hierarchy serves two purposes. It allows options to be controlled en masse, so disabling a component automatically disables
all the options below it in the hierarchy. It also permits a much simpler representation of the configuration in the graphical
configuration tool, facilitating navigation and modification.

19

The CDL Language

By default a package is placed at the top-level of the hierarchy, but it is possible to override this using a parent property.
For example an architectural HAL package such as CYGPKG_HAL_SH typically re-parents itself below CYGPKG_HAL, and
a platform HAL package would then re-parent itself below the architectural HAL. This makes it a little bit easier for users to
navigate around the hierarchy. Components, options and interfaces can also be re-parented, but this is less common.

All components, options and interfaces that are defined directly in the top-level script will be placed below the package in the
hierarchy. Alternatively they can be nested in the body of the cdl_package command. The following two script fragments
are equivalent:

cdl_package CYGPKG_LIBC {
 …
}
cdl_component CYGPKG_LIBC_STRING {
 …
}
cdl_option CYGPKG_LIBC_CTYPE_INLINES {
 …
}

and:

cdl_package CYGPKG_LIBC {
 …
 cdl_component CYGPKG_LIBC_STRING {
 …
 }
 cdl_option CYGPKG_LIBC_CTYPE_INLINES {
 …
 }
}

If a script defines options both inside and outside the body of the cdl_package then the ones inside will be processed first.
Language purists may argue that it would have been better if all contained options and components had to go into the body,
but in practice it is often convenient to be able to skip this level of nesting and the resulting behavior is still well-defined.

Components can also contain options and other CDL entities, in fact that is what distinguishes them from options. These can
be defined in the body of the cdl_component command:

cdl_component CYGPKG_LIBC_STDIO {
 cdl_component CYGPKG_LIBC_STDIO_FLOATING_POINT {
 …
 }
 cdl_option CYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMS {
 …
 }
}

Nesting options inside the bodies of components like this is fine for simple packages with only a limited number of configuration
options, but it becomes unsatisfactory as the number of options increases. Instead it is possible to split the CDL data into
multiple CDL scripts, on a per-component basis. The script property should be used for this. For example, in the case of the C
library all stdio-related configuration options could be put into stdio.cdl, and the top-level CDL script libc.cdl would
contain the following:

cdl_package CYGPKG_LIBC {
 …
 cdl_component CYGPKG_LIBC_STDIO {
 …
 script stdio.cdl
 }
}

The CYGPKG_LIBC_STDIO_FLOATING_POINT component and the
CYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMS option can then be placed at the top-level of stdio.cdl. It is possible
to have some options nested in the body of a cdl_component command and other options in a separate file accessed by the
script property. In such a case the nested options would be processed first, and then the other script would be read in. A script
specified by a script property should only define new options, components or interfaces: it should not contain any additional
properties for the current component.

20

The CDL Language

It is possible for a component's CDL script to have a sub-component which also has a script property, and so on. In practice
excessive nesting like this is rarely useful. It is also possible to ignore the CDL language support for constructing hierarchies
automatically and use the parent property explicitly for every single option and component. Again this is not generally useful.

Note

At the time of writing interfaces cannot act as containers. This may change in a future version of the component
framework. If the change is made then interfaces would support the script property, just like components.

CDL Properties
Each package, component, option, and interface has a body of properties, which provide the component framework with
information about how to handle each option. For example there is a property for a descriptive text message which can be
displayed to a user who is trying to figure out just what effect manipulating the option would have on the target application.
There is another property for the default value, for example whether a particular option should be enabled or disabled by default.

All of the properties are optional, it is legal to define a configuration option which has an empty body. However some properties
are more optional than others: users will not appreciate having to manipulate an option if they are not given any sort of
description or documentation. Other properties are intended only for very specific purposes, for example make_object and
include_files, and are used only rarely.

Because different properties serve very different purposes, their syntax is not as uniform as the top-level commands. Some
properties take no arguments at all. Other properties take a single argument such as a description string, or a list of arguments
such as a compile property which specifies the file or files that should be compiled if a given option is active and enabled.
The define_proc property takes as argument a snippet of Tcl code. The active_if, calculated, default_value, legal_values and
requires properties take various expressions. Additional properties may be defined in future which take new kinds of arguments.

All property parsing code supports options for every property, although at present the majority of properties do not yet take
any options. Any initial arguments that begin with a hyphen character - will be interpreted as an option, for example:

cdl_package CYGPKG_HAL_ARM {
 …
 make -priority 1 {
 …
 }
}

If the option involves additional data, as for the -priority example above, then this can be written as either -priority=1
or as -priority 1. On occasion the option parsing code can get in the way, for example:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_STATE {
 …
 legal_values -1 to 1
 default_value -1
}

Neither the legal_values nor the default_value property will accept -1 as a valid option, so this will result in syntax errors
when the CDL script is read in by the component framework. To avoid problems, the option parsing code will recognize the
string -- and will not attempt to interpret any subsequent arguments. Hence this option should be written as:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_STATE {
 …
 legal_values -- -1 to 1
 default_value -- -1
}

The property parsing code involves a recursive invocation of the Tcl interpreter that is used to parse the top-level commands.
This means that some characters in the body of an option will be treated specially. The # character can be used for comments.
The backslash character \, the dollar character $, square brackets [and], braces { and }, and the quote character " may all
receive special treatment. Most of the time this is not a problem because these characters are not useful for most properties.
On occasion having a Tcl interpreter around performing the parser can be very powerful. For more details of how the presence
of a Tcl interpreter can affect CDL scripts, see the section called “An Introduction to Tcl”.

21

The CDL Language

Many of the properties can be used in any of cdl_package, cdl_component, cdl_option or cdl_interface. Other
properties are more specific. The script property is only relevant to components. The define_header, hardware, include_dir,
include_files, and library properties apply to a package as a whole, so can only occur in the body of a cdl_package command.
The calculated, default_value, legal_values and flavor properties are not relevant to packages, as will be explained later. The
calculated and default_value properties are also not relevant to interfaces.

This section lists the various properties, grouped by purpose. Each property also has a full reference page in Chapter 5, CDL
Language Specification. Properties related to values and expressions are described in more detail in the section called “Values
and Expressions”. Properties related to header file generation and to the build process are described in Chapter 4, The Build
Process.

Information-providing Properties
Users can only be expected to manipulate configuration options sensibly if they are given sufficient information about these
options. There are three properties which serve to explain an option in plain text: the display property gives a textual alias
for an option, which is usually more comprehensible than something like CYGPKG_LIBC_TIME_ZONES`; the description
property gives a longer description, typically a paragraph or so; the doc property specifies the location of additional on-line
documentation related to a configuration option. In the context of a graphical tool the display string will be the primary way
for users to identify configuration options; the description paragraph will be visible whenever the option is selected; the on-
line documentation will only be accessed when the user explicitly requests it.

cdl_package CYGPKG_UITRON {
 display "uITRON compatibility layer"
 doc ref/ecos-ref.a.html
 description "
 eCos supports a uITRON Compatibility Layer, providing
 full Level S (Standard) compliance with Version 3.02 of
 the uITRON Standard, plus many Level E (Extended) features.
 uITRON is the premier Japanese embedded RTOS standard."
 …
}

All three properties take a single argument. For display and description this argument is just a string. For doc it should be
a pointer to a suitable HTML file, optionally including an anchor within that page. If the directory layout conventions are
observed then the component framework will look for the HTML file in the package's doc sub-directory, otherwise the doc
filename will be treated as relative to the package's top-level directory.

The Configuration Hierarchy
There are two properties related to the hierarchical organization of components and options: parent and script.

The parent property can be used to move a CDL entity somewhere else in the hierarchy. The most common use is for packages,
to avoid having all the packages appear at the top-level of the configuration hierarchy. For example an architectural HAL
package such as CYGPKG_HAL_SH is placed below the common HAL package CYGPKG_HAL using a parent property.

cdl_package CYGPKG_HAL_SH {
 display "SH architecture"
 parent CYGPKG_HAL
 …
}

The parent property can also be used in the body of a cdl_component, cdl_option or cdl_interface, but this is
less common. However care has to be taken since excessive re-parenting can be confusing. Care also has to be taken when
reparenting below some other package that may not actually be loaded in a given configuration, since the resulting behavior
is undefined.

As a special case, if the parent is the empty string then the CDL entity is placed at the root of the hierarchy. This is useful for
global preferences, default compiler flags, and other settings that may affect every package.

The script property can only be used in the body of a cdl_component command. The property takes a single filename as
argument, and this should be another CDL script containing additional options, sub-components and interfaces that should go

22

The CDL Language

below the current component in the hierarchy. If the directory layout conventions are observed then the component framework
will look for the specified file relative to the cdl subdirectory of the package, otherwise the filename will be treated as relative
to the package's top-level directory.

cdl_component CYGPKG_LIBC_STDIO {
 display "Standard input/output functions"
 flavor bool
 requires CYGPKG_IO
 requires CYGPKG_IO_SERIAL_HALDIAG
 default_value 1
 description "
 This enables support for standard I/O functions from <stdio.h>."
 script stdio.cdl
}

Value-related Properties
There are seven properties which are related to option values and state: flavor, calculated, default_value, legal_values, active_if,
implements, and requires. More detailed information can be found in the section called “Values and Expressions”.

In the context of configurability, the concept of an option's value is somewhat non-trivial. First an option may or may not be
loaded: it is possible to build a configuration which has the math library but not the kernel; however the math library's CDL
scripts still reference kernel options, for example CYGSEM_LIBM_THREAD_SAFE_COMPAT_MODE has a requires constraint
on CYGVAR_KERNEL_THREADS_DATA. Even if an option is loaded it may or may not be active, depending on what is
happening higher up in the hierarchy: if the C library's CYGPKG_LIBC_STDIO component is disabled then some other options
such as CYGNUM_LIBC_STDIO_BUFSIZE become irrelevant. In addition each option has both a boolean enabled/disabled
flag and a data part. For many options only the boolean flag is of interest, while for others only the data part is of interest.
The flavor property can be used to control this:

flavor none This flavor indicates that neither the boolean nor the data parts are user-modifiable: the
option is always enabled and the data is always set to 1. The most common use for this
is to have a component that just acts as a placeholder in the hierarchy, allowing various
options to be grouped below it.

flavor bool Only the boolean part of the option is user-modifiable. The data part is fixed at 1.

flavor data Only the data part of the option is user-modifiable. The boolean part is fixed at enabled.

flavor booldata Both the boolean and the data part of the option are user-modifiable.

For more details of CDL flavors and how a flavor affects expression evaluation, and other consequences, see the section called
“Values and Expressions”. The flavor property cannot be used for a package because packages always have the booldata
flavor. Options and components have the bool flavor by default, since most configuration choices are simple yes-or-no
choices. Interfaces have the data flavor by default.

The calculated property can be used for options which should not be user-modifiable, but which instead are fixed by the target
hardware or determined from the current values of other options. In general calculated options should be avoided, since they
can be confusing to users who need to figure out whether or not a particular option can actually be changed. There are a number
of valid uses for calculated options, and quite a few invalid ones as well. The reference packages should be consulted for further
details. The property takes an ordinary CDL expression as argument, for example:

A constant on some target hardware, perhaps user-modifiable on other
targets.
cdl_option CYGNUM_HAL_RTC_PERIOD {
 display "Real-time clock period"
 flavor data
 calculated 12500
}

The calculated property cannot be used for packages or interfaces. The value of a package always corresponds to the version
of that package which is loaded, and this is under user control. Interfaces are implicitly calculated, based on the number of
active and enabled implementors.

23

The CDL Language

The default_value property is similar to calculated, but only specifies a default value which users can modify. Again this
property is not relevant to packages or interfaces. A typical example would be:

cdl_option CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT {
 display "Include GDB multi-threading debug support"
 requires CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
 default_value CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
 …
}

The legal_values property imposes a constraint on the possible values of the data part of an option. Hence it is only applicable
to options with the data or booldata flavors. It cannot be used for a package since the only valid value for a package is its
version number. The arguments to the legal_values property should constitute a CDL list expression.

cdl_option CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET {
 display "Default Standard Time offset"
 flavor data
 legal_values -- -90000 to 90000
 default_value -- 0
 …
}

The active_if property does not relate directly to an option's value, but rather to its active state. Usually this is controlled via the
configuration hierarchy: if the CYGPKG_LIBC_STDIO component is disabled then all options below it are inactive and do not
have any consequences. In some cases the hierarchy does not provide sufficient control, for example an option should only be
active if two disjoint sets of conditions are satisfied: the hierarchy could be used for one of these conditions, and an additional
active_if property could be used for the other one. The arguments to active_if should constitute a CDL goal expression.

Do not provide extra semaphore debugging if there are no semaphores
cdl_option CYGDBG_KERNEL_INSTRUMENT_BINSEM {
 active_if CYGPKG_KERNEL_SYNCH
 …
}

The implements property is related to the concept of CDL interfaces. If an option is active and enabled and it implements a
particular interface then it contributes 1 to that interface's value.

cdl_package CYGPKG_NET_EDB7XXX_ETH_DRIVERS {
 display "Cirrus Logic ethernet driver"
 implements CYGHWR_NET_DRIVERS
 implements CYGHWR_NET_DRIVER_ETH0
 …
}

The requires property is used to impose constraints on the user's choices. For example it is unreasonable to expect the C library
to provide thread-safe implementations of certain functions if the underlying kernel support has been disabled, or even if the
kernel is not being used at all.

cdl_option CYGSEM_LIBC_PER_THREAD_ERRNO {
 display "Per-thread errno"
 doc ref/ecos-ref.15.html
 requires CYGVAR_KERNEL_THREADS_DATA
 default_value 1
 …
}

The arguments to the requires property should be a CDL goal expression.

Generating the Configuration Header Files
When creating or updating a build tree the component framework will also generate configuration header files, one per package.
By default it will generate a #define for each option, component or interface that is active and enabled. For options with
the data or booldata flavors the #define will use the option's data part, otherwise it will use the constant 1. Typical
output would include:

#define CYGFUN_LIBC_TIME_POSIX 1

24

The CDL Language

#define CYGNUM_LIBC_TIME_DST_DEFAULT_STATE -1

There are six properties which can be used to control the header file generation process: define_header, no_define,
define_format, define, if_define, and define_proc.

By default the component framework will generate a configuration header file for each package based on the package's name:
everything up to and including the first underscore is discarded, the rest of the name is lower-cased, and a .h suffix is
appended. For example the configuration header file for the kernel package CYGPKG_KERNEL is pkgconf/kernel.h.
The define_header property can be used to specify an alternative filename. This applies to all the components and options
within a package, so it can only be used in the body of a cdl_package command. For example the following specifies that
the configuration header file for the SPARClite HAL package is pkgconf/hal_sparclite.h.

cdl_package CYGPKG_HAL_SPARCLITE {
 display "SPARClite architecture"
 parent CYGPKG_HAL
 hardware
 define_header hal_sparclite.h
 …
}

Note

At present the main use for the define_header property is related to hardware packages, see the reference pages
for more details.

The no_define property is used to suppress the generation of the default #define. This can be useful if an option's
consequences are all related to the build process or to constraints, and the option is never actually checked in any source code.
It can also be useful in conjunction with the define, if_define or define_proc properties. The no_define property does not take
any arguments.

cdl_component CYG_HAL_STARTUP {
 display "Startup type"
 flavor data
 legal_values { "RAM" "ROM" }
 default_value {"RAM"}
 no_define
 define -file system.h CYG_HAL_STARTUP
 …
}

This example also illustrates the define property, which can be used to generate a #define in addition to the default one. It
takes a single argument, the name of the symbol to be defined. It also takes options to control the configuration header file in
which the symbol should be defined and the format to be used.

The define_format property can be used to control how the value part of the default #define gets formatted. For example a
format string of "0x%04x" could be used to generate a four-digit hexadecimal number.

The if_define property is intended for use primarily to control assertions, tracing, and similar functionality. It supports a specific
implementation model for these, allowing control at the grain of packages or even individual source files. The reference pages
provide additional information.

The define_proc property provides an escape mechanism for those cases where something special has to happen at configuration
header file generation time. It takes a single argument, a fragment of Tcl code, which gets executed when the header file is
generated. This code can output arbitrary data to the header file, or perform any other actions that might be appropriate.

Controlling what gets Built
There are six properties which affect the build process: compile, make, make_object, library, include_dir, and include_files.
The last three apply to a package as a whole, and can only occur in the body of a cdl_package command.

Most of the source files that go into a package should simply be compiled with the appropriate compiler, selected by the target
architecture, and with the appropriate flags, with an additional set defined by the target hardware and possible modifications

25

The CDL Language

on a per-package basis. The resulting object files will go into the library libtarget.a, which can then be linked against
application code. The compile property is used to list these source files:

cdl_package CYGPKG_ERROR {
 display "Common error code support"
 compile strerror.cxx
 include_dir cyg/error
 …
}

The arguments to the compile property should be one or more source files. Typically most of the sources will be needed for
the package as a whole, and hence they will be listed in one or more compile properties in the body of the cdl_package.
Some sources may be specific to particular configuration options, in other words there is no point in compiling them unless
that option is enabled, in which case the sources should be listed in a compile property in the corresponding cdl_option,
cdl_component or cdl_interface body.

Some packages may have more complicated build requirements, for example they may involve a special target such as a linker
script which should not end up in the usual library, or they may involve special build steps for generating an object file. The
make and make_object properties provide support for such requirements, for example:

cdl_package CYGPKG_HAL_MN10300_AM33 {
 display "MN10300 AM33 variant"
 …
 make {
 <PREFIX>/lib/target.ld: <PACKAGE>/src/mn10300_am33.ld
 $(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) \
 $(CFLAGS) -o $@ $<
 @echo $@ ": \\" > $(notdir $@).deps
 @tail +2 target.tmp >> $(notdir $@).deps
 @echo >> $(notdir $@).deps
 @rm target.tmp
 }
}

For full details of custom build steps and the build process generally, see Chapter 4, The Build Process.

By default all object files go into the library libtarget.a. It is possible to override this at the package level using the library
property, but this should be avoided since it complicates application development: instead of just linking with a single library
for all eCos-related packages, it suddenly becomes necessary to link with several libraries.

The include_dir and include_files properties relate to a package's exported header files. By default a package's header files
will be exported to the install/include directory. This is the desired behavior for some packages like the C library,
since headers like stdio.h should exist at that level. However if all header files were to end up in that directory then there
would be a significant risk of a name clash. Instead it is better for packages to specify some sub-directory for their exported
header files, for example:

cdl_package CYGPKG_INFRA {
 display "Infrastructure"
 include_dir cyg/infra
 …
}

The various header files exported by the infrastructure, for example cyg_ass.h and cyg_trac.h will now end up in the
install/include/cyg/infra sub-directory, where a name clash is very unlikely.

For packages which follow the directory layout conventions the component framework will assume that the package's
include sub-directory contains all exported header files. If this is not the case, for example because the package is sufficiently
simple that the layout convention is inappropriate, then the exported header files can be listed explicitly in an include_files
property.

Miscellaneous Properties
The hardware property is only relevant to packages. Some packages such as device drivers and HAL packages are hardware-
specific, and generally it makes no sense to add such packages to a configuration unless the corresponding hardware is present

26

The CDL Language

on your target system. Typically hardware package selection happens automatically when you select your target. The hardware
property should be used to identify a hardware-specific package, and does not take any arguments.

cdl_package CYGPKG_HAL_MIPS {
 display "MIPS architecture"
 parent CYGPKG_HAL
 hardware
 include_dir cyg/hal
 define_header hal_mips.h
 …
}

At present the hardware property is largely ignored by the component framework. This may change in future releases.

Option Naming Convention
All the options in a given configuration live in the same namespace. Furthermore it is not possible for two separate options
to have the same name, because this would make any references to those options in CDL expressions ambiguous. A naming
convention exists to avoid problems. It is recommended that component writers observe some or all of this convention to reduce
the probability of name clashes with other packages.

There is an important restriction on option names. Typically the component framework will output a #define for every active
and enabled option, using the name as the symbol being defined. This requires that all names are valid C preprocessor symbols,
a limitation that is enforced even for options which have the no_define property. Preprocessor symbols can be any sequence
of lower case letters a-z, upper case letters, A-Z, the underscore character _, and the digits 0-9. The first character must be a
non-digit. Using an underscore as the first character is discouraged, because that may clash with reserved language identifiers.
In addition there is a convention that preprocessor symbols only use upper case letters, and some component writers may wish
to follow this convention.

A typical option name could be something like CYGSEM_KERNEL_SCHED_BITMAP. This name consists of several different
parts:

1. The first few characters, in this case the three letters CYG, are used to identify the organization that produced the package.
For historical reasons packages produced by Red Hat tend to use the prefix CYG rather than RHAT. Component writers
should use their own prefix: even when cutting and pasting from an existing CDL script the prefix should be changed to
something appropriate to their organization.

It can be argued that a short prefix, often limited to upper case letters, is not sufficiently long to eliminate the possibility of
name clashes. A longer prefix could be used, for example one based on internet domain names. However the C preprocessor
has no concept of namespaces or import directives, so it would always be necessary to use the full option name in
component source code which gets tedious - option names tend to be long enough as it is. There is a small increased risk
of name clashes, but this risk is felt to be acceptable.

2. The next three characters indicate the nature of the option, for example whether it affects the interface or just the
implementation. A list of common tags is given below.

3. The KERNEL_SCHED part indicates the location of the option within the overall hierarchy. In this case the option is part
of the scheduling component of the kernel package. Having the hierarchy details as part of the option name can help in
understanding configurable code and further reduces the probability of a name clash.

4. The final part, BITMAP, identifies the option itself.

The three-character tag is intended to provide some additional information about the nature of the option. There are a number
of pre-defined tags. However for many options there is a choice: options related to the platform should normally use HWR, but
numerical options should normally use NUM; a platform-related numerical option such as the size of an interrupt stack could
therefore use either tag. There are no absolute rules, and it is left to component writers to interpret the following guidelines:

xxxARC_ The ARC tag is intended for options related to the processor architecture. Typically such
options will only occur in architectural or variant HAL packages.

xxxHWR_ The HWR tag is intended for options related to the specific target board. Typically such
options will only occur in platform HAL packages.

27

The CDL Language

xxxPKG_ This tag is intended for packages or components, in other words options which
extend the configuration hierarchy. Arguably a COM tag would be more appropriate
for components, but this could be confusing because of the considerable number of
computing terms that begin with com.

xxxGLO_ This is intended for global configuration options, especially preferences.

xxxDBG_ The DBG tag indicates that the option is in some way related to debugging, for example
it may enable assertions in some part of the system.

xxxTST_ This tag is for testing-related options. Typically these do not affect actual application
code, instead they control the interaction between target-side test cases and a host-side
testing infrastructure.

xxxFUN_ This is for configuration options which affect the interface of a package. There are a
number of related tag which are also interface-related. xxxFUN_ is intended primarily
for options that control whether or not one or more functions are provided by the
package, but can also be used if none of the other interface-related tags is applicable.

xxxVAR_ This is analogous to FUN but controls the presence or absence of one or more variables
or objects.

xxxCLS_ The CLS tag is intended only for packages that provide an object-oriented interface, and
controls the presence or absence of an entire class.

xxxMFN_ This is also for object-orientated interfaces, and indicates the presence or absence of a
member function rather than an entire class.

xxxSEM_ A SEM option does not affect the interface (or if does affect the interface, this is
incidental). Instead it is used for options which have a fundamental effect on the semantic
behavior of a package. For example the choice of kernel schedulers is semantic in nature:
it does not affect the interface, in particular the function cyg_thread_create exists
irrespective of which scheduler has been selected. However it does have a major impact
on the system's behavior.

xxxIMP_ IMP is for implementation options. These do not affect either the interface or the
semantic behavior (with the possible exception of timing-related changes). A typical
implementation option controls whether or not a particular function or set of functions
should get inlined.

xxxNUM_ This tag is for numerical options, for example the number of scheduling priority levels.

xxxDAT_ This is for data items that are not numerical in nature, for example a device name.

xxxBLD_ The BLD tag indicates an option that affects the build process, for example compiler
flag settings.

xxxINT_ This should normally be used for CDL interfaces, which is a language construct that is
largely independent from the interface exported by a package via its header files. For
more details of CDL interfaces see the section called “Interfaces”.

xxxPRI_ This tag is not normally used for configuration options. Instead it is used by CDL scripts
to pass additional private information to the source code via the configuration header
files, typically inside a define_proc property.

xxxSRC_ This tag is not normally used for configuration options. Instead it can be used by package
source code to interact with such options, especially in the context of the if_define
property.

There is one special case of a potential name clash that is worth mentioning here. When the component framework generates a
configuration header file for a given package, by default it will use a name derived from the package name (the define_header

28

The CDL Language

property can be used to override this). The file name is constructed from the package name by removing everything up to and
including the first underscore, converting the remainder of the name to lower case, and appending a .h suffix. For example the
kernel package CYGPKG_KERNEL will involve a header file pkgconf/kernel.h. If a configuration contained some other
package XYZPKG_KERNEL then this would attempt to use the same configuration header file, with unfortunate effects. Case
sensitivity could introduce problems as well, so a package xyzpkg_kernel would involve the same problem. Even if the
header file names preserved the case of the package name, not all file systems are case sensitive. There is no simple solution
to this problem. Changing the names of the generated configuration header files would involve a major incompatible change
to the interface, to solve a problem which is essentially hypothetical in nature.

An Introduction to Tcl
All CDL scripts are implemented as Tcl scripts, and are read in by running the data through a standard Tcl interpreter, extended
with a small number of additional commands such as cdl_option and cdl_component. Often it is not necessary to know
the full details of Tcl syntax. Instead it is possible to copy an existing script, perform some copy and paste operations, and
make appropriate changes to names and to various properties. However there are also cases where an understanding of Tcl
syntax is very desirable, for example:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
 display "Externs for initialization"
 flavor data
 default_value {"static char fpool1[2000], \\\n\
 fpool2[2000], \\\n\
 fpool3[2000];"}
 …
}

This causes the cdl_option command to be executed, which in turn evaluates its body in a recursive invocation of the Tcl
interpreter. When the default_value property is encountered the braces around the value part are processed by the interpreter,
stopping it from doing further processing of the braced contents (except for backslash processing at the end of a line, that is
special). In particular it prevents command substitution for [2000]. A single argument will be passed to the default_value
command which expects a CDL expression, so the expression parsing code is passed the following:

"static char fpool1[2000], \\\n fpool2[2000], \\\n fpool3[2000];"

The CDL expression parsing code will treat this as a simple string constant, as opposed to a more complicated expression
involving other options and various operators. The string parsing code will perform the usual backslash substitutions so the
actual default value will be:

static char fpool1[2000], \
fpool2[2000], \
fpool3[2000];

If the user does not modify the option's value then the following will be generated in the appropriate configuration header file:

#define CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS static char fpool1[2000], \
fpool2[2000], \
fpool3[2000];

Getting this desired result usually requires an understanding of both Tcl syntax and CDL expression syntax. Sometimes it is
possible to substitute a certain amount of trial and error instead, but this may prove frustrating. It is also worth pointing out
that many CDL scripts do not involve this level of complexity. On the other hand, some of the more advanced features of the
CDL language involve fragments of Tcl code, for example the define_proc property. To use these component writers will need
to know about the full Tcl language as well as the syntax.

Although the current example may seem to suggest that Tcl is rather complicated, it is actually a very simple yet powerful
scripting language: the syntax is defined by just eleven rules. On occasion this simplicity means that Tcl's behavior is subtly
different from other languages, which can confuse newcomers.

When the Tcl interpreter is passed some data such as puts Hello, it splits this data into a command and its arguments. The
command will be terminated by a newline or by a semicolon, unless one of the quoting mechanisms is used. The command
and each of its arguments are separated by white space. So in the following example:

puts Hello

29

The CDL Language

set x 42

This will result in two separate commands being executed. The first command is puts and is passed a single argument, Hello.
The second command is set and is passed two arguments, x and 42. The intervening newline character serves to terminate
the first command, and a semi-colon separator could be used instead:

puts Hello;set x 42

Any white space surrounding the semicolon is just ignored because it does not serve to separate arguments.

Now consider the following:

set x Hello world

This is not valid Tcl. It is an attempt to invoke the set command with three arguments: x, Hello, and world. The set only
takes two arguments, a variable name and a value, so it is necessary to combine the data into a single argument by quoting:

set x "Hello world"

When the Tcl interpreter encounters the first quote character it treats all subsequent data up to but not including the closing
quote as part of the current argument. The quote marks are removed by the interpreter, so the second argument passed to the
set command is just Hello world without the quote characters. This can be significant in the context of CDL scripts.
For example:

cdl_option CYG_HAL_STARTUP {
 …
 default_value "RAM"
}

The Tcl interpreter strips off the quote marks so the CDL expression parsing code sees RAM instead of "RAM". It will treat
this as a reference to some unknown option RAM rather than as a string constant, and the expression evaluation code will use a
value of 0 when it encounters an option that is not currently loaded. Therefore the option CYG_HAL_STARTUP ends up with
a default value of 0. Either braces or backslashes should be used to avoid this, for example default_value { "RAM" }.

Note

There are long-term plans to implement some sort of CDL validation utility cdllint which could catch common
errors like this one.

A quoted argument continues until the closing quote character is encountered, which means that it can span multiple lines.
Newline or semicolon characters do not terminate the current command in such cases. description properties usually make
use of this:

cdl_package CYGPKG_ERROR {
 description "
 This package contains the common list of error and
 status codes. It is held centrally to allow
 packages to interchange error codes and status
 codes in a common way, rather than each package
 having its own conventions for error/status
 reporting. The error codes are modelled on the
 POSIX style naming e.g. EINVAL etc. This package
 also provides the standard strerror() function to
 convert error codes to textual representation."
 …
}

The Tcl interpreter supports much the same forms of backslash substitution as other common programming languages. Some
backslash sequences such as \n will be replaced by the appropriate character. The sequence \\ will be replaced by a single
backslash. A backslash at the very end of a line will cause that backslash, the newline character, and any white space at the
start of the next line to be replaced by a single space. Hence the following two Tcl commands are equivalent:

puts "Hello\nworld\n"
puts \
"Hello
world

30

The CDL Language

"

If a description string needs to contain quote marks or other special characters then backslash escapes can be used. In addition to
quote and backslash characters, the Tcl interpreter treats square brackets, the $ character, and braces specially. Square brackets
are used for command substitution, for example:

puts "The answer is [expr 6 * 9]"

When the Tcl interpreter encounters the square brackets it will treat the contents as another command that should be executed
first, and the result of executing that is used when continuing to process the script. In this case the Tcl interpreter will execute
the command expr 6 * 9, yielding a result of 42 1 and then the Tcl interpreter will execute puts "The answer is 42".
It should be noted that the interpreter performs only one level of substitution: if the result of performing command substitution
performs further special characters such as square brackets then these will not be treated specially.

Command substitution will not prove useful for many CDL scripts, except for e.g. a define_proc property which involves a
fragment of Tcl code. Potentially there are some interesting uses, for example to internationalize display strings. However care
does have to be taken to avoid unexpected command substitution, for example if an option description involves square brackets
then typically these would require backslash-escapes.

The $ character is used in Tcl scripts to perform variable substitution:

set x [expr 6 * 9]
puts "The answer is $x"

Variable substitution, like command substitution, is unlikely to prove useful for many CDL scripts except in the context of Tcl
fragments. If it is necessary to have a $ character then a backslash escape may have to be used.

Braces are used to collect a sequence of characters into a single argument, just like quotes. The difference is that variable,
command and backslash substitution do not occur inside braces (with the sole exception of backslash substitution at the end
of a line). Therefore given a line in a CDL script such as:

default_value {"RAM"}

The braces are stripped off by the Tcl interpreter, leaving "RAM" which will be handled as a string constant by the expression
parsing code. The same effect could be achieved using one of the following:

default_value \"RAM\"
default_value "\"RAM\""

Generally the use of braces is less confusing. At this stage it is worth noting that the basic format of CDL data makes use
of braces:

cdl_option <name> {
 …
};

The cdl_option command is passed two arguments, a name and a body, where the body consists of everything inside the
braces but not the braces themselves. This body can then be executed in a recursive invocation of the Tcl interpreter. If a CDL
script contains mismatched braces then the interpreter is likely to get rather confused and the resulting diagnostics may be
difficult to understand.

Comments in Tcl scripts are introduced by a hash character #. However, a hash character only introduces a comment if it
occurs where a command is expected. Consider the following:

This is a comment
puts "Hello" # world

The first line is a valid comment, since the hash character occurs right at the start where a command name is expected. The
second line does not contain a comment. Instead it is an attempt to invoke the puts command with three arguments: Hello, #
and world. These are not valid arguments for the puts command so an error will be raised. If the second line was rewritten as:

puts "Hello"; # world

1It is possible that some versions of the Tcl interpreter will instead produce a result of 54 when asked to multiply six by nine. Appropriate reference
documentation should be consulted for more information on why 42 is in fact the correct answer.

31

http://www.douglasadams.com/creations/hhgg.html
http://www.douglasadams.com/creations/hhgg.html

The CDL Language

then this is a valid Tcl script. The semicolon identifies the end of the current command, so the hash character occurs at a point
where the next command would start and hence it is interpreted as the start of a comment.

This handling of comments can lead to subtle behavior. Consider the following:

cdl_option WHATEVER {
 # This is a comment }
 default_value 0
 …
}

Consider the way the Tcl interpreter processes this. The command name and the first argument do not pose any special
difficulties. The opening brace is interpreted as the start of the next argument, which continues until a closing brace is
encountered. In this case the closing brace occurs on the second line, so the second argument passed to cdl_option is
\n # This is a comment. This second argument is processed in a recursive invocation of the Tcl interpreter
and does not contain any commands, just a comment. Top-level script processing then resumes, and the next command that is
encountered is default_value. Since the parser is not currently processing a configuration option this is an error. Later on
the Tcl interpreter would encounter a closing brace by itself, which is also an error.

For component writers who need more information about Tcl, especially about the language rather than the syntax, various
resources are available. A reasonable starting point is the Scriptics developer web site.

Values and Expressions
It is fairly reasonable to expect that enabling or disabling a configuration option such as CYGVAR_KERNEL_THREADS_DATA
in some way affects its value. This will have an effect on any expressions that reference this option such as
requires CYGVAR_KERNEL_THREADS_DATA. It will also affect the consequences of that option: how it affects the build
process and what happens to any constraints that CYGVAR_KERNEL_THREADS_DATA may impose (as opposed to constraints
on this option imposed by others).

In a language like C the handling of variables is relatively straightforward. If a variable x gets referenced in an expression such
as if (x != 0), and that variable is not defined anywhere, then the code will fail to build, typically with an unresolved
error at link-time. Also in C a variable x does not live in any hierarchy, so its value for the purposes of expression evaluation
is not affected by anything else. C variables also have a clear type such as int or long double.

In CDL things are not so straightforward.

Option Values
There are four factors which go into an option's value:

1. An option may or may not be loaded.

2. If the option is loaded, it may or may not be active.

3. Even if the option is active, it may or may not be enabled.

4. If the option is loaded, active and enabled then it will have some associated data which constitutes its value.

Is the Option Loaded?

At any one time a configuration will contain only a subset of all possible packages. In fact it is impossible to combine certain
packages in a single configuration. For example architectural HAL packages should contain a set of options defining endianness,
the sizes of basic data types and so on (many of which will of course be constant for any given architecture). Any attempt to
load two architectural HAL packages into a configuration will fail because of the resulting name clash. Since CDL expressions
can reference options in other packages, and often need to do so, it is essential to define the resulting behavior.

One complication is that the component framework does not know about every single option in every single package. Obviously
it cannot know about packages from arbitrary third parties which have not been installed. Even for packages which have been
installed, the current repository database does not hold details of every option, only of the packages themselves. If a CDL

32

http://www.tcl.tk/scripting/

The CDL Language

expression contains a reference to some option CYGSEM_KERNEL_SCHED_TIMESLICE then the component framework
will only know about this option if the kernel package is actually loaded into the current configuration. If the package is not
loaded then theoretically the framework might guess that the option is somehow related to the kernel by examining the option
name but this would not be robust: the option could easily be part of some other package that violates the naming convention.

Assume that the user is building a minimal configuration which does not contain the kernel package, but does have other
packages which contain the following constraints:

requires CYGPKG_KERNEL
requires CYGPKG_KERNEL_THREADS_DATA
requires !CYGSEM_KERNEL_SCHED_TIMESLICE

Clearly the first constraint is not satisfied because the kernel is not loaded. The second constraint is also not satisfied. The third
constraint is trivially satisfied: if there is no kernel then the kernel's timeslicing support cannot possibly be enabled.

Any options which are not in the current configuration are handled as follows:

1. Any references to that option will evaluate to 0, so requires !CYGSEM_KERNEL_SCHED_TIMESLICE will be
satisfied but requires CYGSEM_KERNEL_THREADS_DATA will not be satisfied.

2. An option that is not loaded has no consequences on the build process. It cannot directly result in any #define's in
a configuration header file, nor in any files being compiled. This is only reasonable: if the option is not loaded then the
component framework has no way of knowing about any compile or similar properties. An option that is not loaded can
have indirect consequences by being referenced in CDL expressions.

3. An option that is not loaded cannot impose any constraints on the rest of the configuration. Again this is the only reasonable
behavior: if the option is not loaded then any associated requires or legal_values properties will not be known.

Is the Option Active

The next issue to consider is whether or not a particular option is active. Configuration options are organized in a hierarchy
of components and sub-components. For example the C library package contains a component CYGPKG_LIBC_STDIO
containing all the options related to standard I/O. If a user disables the component as a whole then all the options below it
become inactive: it makes no sense to disable all stdio functionality and then manipulate the buffer sizes.

Inactive is not quite the same as disabled, although the effects are similar. The value of an inactive option is preserved. If the
user modifies a buffer size option, then disables the whole stdio component, the buffer size value remains in case the stdio
component is re-enabled later on. Some tools such as the graphical configuration tool will treat inactive options specially, for
example such options may be grayed out.

The active or inactive state of an option may affect other packages. For example a package may use the sprintf function and
require support for floating point conversions, a constraint that is not satisfied if the relevant option is inactive. It is necessary
to define exactly what it means for an option to be inactive:

1. An option is inactive if its parent is either inactive or disabled. For example if CYGPKG_LIBC_STDIO is disabled then all
the options and sub-components become inactive; since CYGPKG_LIBC_STDIO_FLOATING_POINT is now inactive,
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT is inactive as well.

2. Options may also be inactive as a result of an active_if property. This is useful if a particular option is only relevant if two or
more disjoint sets of conditions need to be satisfied, since the hierarchical structure can only cope with at most one such set.

3. If an option is inactive then any references to that option in CDL expressions will evaluate to 0. Hence a constraint of the
form requires CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT is not satisfied if the entire stdio component
is disabled.

4. An option that is inactive has no consequences on the build process. No #define will be generated. Any compile or similar
properties will be ignored.

5. An option that is inactive cannot impose any constraints on the rest of the configuration. For example
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT has a dependency requires CYGPKG_LIBM, but if all of the
stdio functionality is disabled then this constraint is ignored (although of course there may be other packages which have
a dependency on CYGPKG_LIBM.

33

The CDL Language

Is the Option Enabled? What is the Data?

The majority of configuration options are boolean in nature, so the user can either enable or disable some
functionality. Some options are different. For example CYGNUM_LIBC_STDIO_BUFSIZE is a number, and
CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE is a string corresponding to a device name. A few options like
CYGDAT_UITRON_TASK_EXTERNS can get very complicated. CDL has to cope with this variety, and define the exact
behavior of the system in terms of constraints and build-time consequences.

In CDL the value of an option consists of two parts. There is a boolean part, controlling whether or not the option is enabled.
There is also a data part, providing additional information. For most options one of these parts is fixed, as controlled by the
option's flavor property:

Flavor Enabled Data

none Always enabled 1, not modifiable

bool User-modifiable 1, not modifiable

data Always enabled User-modifiable

booldata User-modifiable User-modifiable

The effects of the boolean and data parts are as follows:

1. If an option is disabled, in other words if the boolean part is false, then any references to that option in CDL expressions will
evaluate to 0. This is the same behavior as for inactive options. The data part is not relevant. The none and data flavors
specify that the option is always enabled, in which case this rule is not applicable.

2. If an option is enabled then any references to that option in CDL expressions will evaluate to the option's data part. For two
of the flavors, none and bool, this data part is fixed to the constant 1 which generally has the expected result.

3. If a component or package is disabled then all sub-components and options immediately below it in the hierarchy are
inactive. By a process of recursion this will affect all the nodes in the subtree.

4. If an option is disabled then it can impose no constraints on the rest of the configuration, in particular requires and
legal_values properties will be ignored. If an option is enabled then its constraints should be satisfied, or the component
framework will report various conflicts. Note that the legal_values constraint only applies to the data part of the option's
value, so it is only useful with the data and booldata flavors. Options with the none and data flavors are always
enabled so their constraints always have to be satisfied (assuming the option is active).

5. If an option is disabled then it has no direct consequences at build-time: no #define will be generated, no files will get
compiled, and so on. If an option is active and enabled then all the consequences take effect. The option name and data
part are used to generate the #define in the appropriate configuration header file, subject to various properties such as
no_define, but the data part has no other effects on the build system.

By default all options and components have the bool flavor: most options are boolean in nature, so making this the default
allows for slightly more compact CDL scripts. Packages have the booldata flavor, where the data part always corresponds
to the version of the package that is loaded into the configuration: changing this value corresponds to unloading the old version
and loading in a different one.

CDL Flavors

The concept of CDL flavors tends to result in various discussions about why it is unnecessarily complicated, and
would it not have been easier to do … However there are very good reasons why CDL works the way it does.

The first common suggestion is that there is no need to have separate flavors bool, data, and so on. A boolean
option could just be handled as a data option with legal values 0 and 1. The counter arguments are as follows:

1. It would actually make CDL scripts more verbose. By default all options and components have the bool
flavor, since most options are boolean in nature. Without a bool flavor it would be necessary to indicate
explicitly what the legal values are somehow, e.g. with a legal_values property.

34

The CDL Language

2. The boolean part of an option's value has a very different effect from the data part. If an option is
disabled then it has no consequences at build time, and can impose no constraints. A data option always
has consequences and can impose constraints. To get the desired effect it would be necessary to add
CDL data indicating that a value of 0 should be treated specially. Arguably this could be made built-in
default behavior, although that would complicate options where 0 is a perfectly legal number, for example
CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET.

3. There would no replacement for a booldata option for which 0 is a valid value. Again some additional
CDL syntax would be needed to express such a concept.

Although initially it may seem confusing that an option's value has both a boolean and a data part, it is an accurate
reflection of how configuration options actually work. The various alternatives would all make it harder to write
CDL scripts.

The next common suggestion is that the data part of a value should be typed in much the same way as C or C
++ data types. For example it should be possible to describe CYGNUM_LIBC_STDIO_BUFSIZE as an integer
value, rather than imposing legal_values constraints. Again there are very good reasons why this approach was
not taken:

1. The possible legal values for an integer are rarely correct for a CDL option. A constraint such as
1 to 0x7fffffff is a bit more accurate, although if this option indicates a buffer size it is still not
particularly good — very few targets will have enough memory for such a buffer. Forcing CDL writers
to list the legal_values constraints explicitly should make them think a bit more about what values are
actually sensible. For example CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET has legal values in the
range -90000 to 90000, which helps the user to set a sensible value.

2. Not all options correspond to simple data types such as integers.
CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE is a C string, and would have to be expressed using
something like char []. This introduces plenty of opportunities for confusion, especially since square
brackets may get processed by the Tcl interpreter for command substitution.

3. Some configuration options can get very complicated indeed, for example the default value of
CYGDAT_UITRON_TASK_INITIALIZERS is:

CYG_UIT_TASK("t1", 1, task1, &stack1, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK("t2", 2, task2, &stack2, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK("t3", 3, task3, &stack3, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK("t4", 4, task4, &stack4, CYGNUM_UITRON_STACK_SIZE)

This would require CDL knowing about C macros, structures, arrays, static initializers, and so on. Adding
such detailed knowledge about the C language to the component framework is inappropriate.

4. CDL needs to be usable with languages other than C. At present this includes C++, in future it may include
languages such as Java. Each language adds new data types and related complications, for example C++ classes
and inheritance. Making CDL support a union of all data types in all possible languages is not sensible.

The CDL approach of treating all data as a sequence of characters, possibly constrained by a legal_values property
or other means, has the great advantage of simplicity. It also fits in with the Tcl language that underlies CDL.

Some Examples

The following excerpt from the C library's CDL scripts can be used to illustrate how values and flavors work in practice:

cdl_component CYGPKG_LIBC_RAND {
 flavor none
 compile stdlib/rand.cxx
 cdl_option CYGSEM_LIBC_PER_THREAD_RAND {
 requires CYGVAR_KERNEL_THREADS_DATA
 default_value 0
 }
 cdl_option CYGNUM_LIBC_RAND_SEED {
 flavor data

35

The CDL Language

 legal_values 0 to 0x7fffffff
 default_value 1
 }
 cdl_option CYGNUM_LIBC_RAND_TRACE_LEVEL {
 flavor data
 legal_values 0 to 1
 default_value 0
 }
}

If the application does not require any C library functionality then it is possible to have a configuration where the C library
is not loaded. This can be achieved by starting with the minimal template, or by starting with another template such as the
default one and then explicitly unloading the C library package. If this package is not loaded then any references to the
CYGPKG_LIBC_RAND component or any of its options will have a value of 0 for the purposes of expression evaluation.
No #define's will be generated for the component or any of its options, and the file stdlib/rand.cxx will not get
compiled. There is nothing special about the C library here, exactly the same would apply for say a device driver that does not
correspond to any of the devices on the target hardware.

Assuming the C library is loaded, the next thing to consider is whether or not the component and its options are active. The
component is layered immediately below the C library package itself, so if the package is loaded then it is safe to assume that
the package is also enabled. Therefore the parent of CYGPKG_LIBC_RAND is active and enabled, and in the absence of any
active_if properties CYGPKG_LIBC_RAND will be active as well.

The component CYGPKG_LIBC_RAND has the flavor none. This means the component cannot be disabled. Therefore all
the options in this component have an active and enabled parent, and in the absence of any active_if properties they are all
active as well.

The component's flavor none serves to group together all of the configuration options related to random number generation.
This is particularly useful in the context of the graphical configuration tool, but it also helps when it comes to naming the
options: all of the options begin with CYGxxx_LIBC_RAND, giving a clear hint about both the package and the component
within that package. The flavor means that the component is always enabled and has the value 1 for the purposes of expression
evaluation. There will always be a single #define of the form:

#define CYGPKG_LIBC_RAND 1

In addition the file stdlib/rand.cxx will always get built. If the component had the default bool flavor then users would
be able to disable the whole component, and one less file would need to be built. However random number generation is
relatively simple, so the impact on eCos build times are small. Furthermore by default the code has no dependencies on other
parts of the system, so compiling the code has no unexpected side effects. Even if it was possible to disable the component,
the sensible default for most applications would still leave it enabled. The net result is that the flavor none is probably the
most sensible one for this component. For other components the default bool flavor or one of the other flavors might be
more appropriate.

Next consider option CYGSEM_LIBC_PER_THREAD_RAND which can be used to get a per-thread random number seed,
possibly useful if the application needs a consistent sequence of random numbers. In the absence of a flavor property this
option will be boolean, and the default_value property means that it is disabled by default — reasonable since few applications
need this particular functionality, and it does impose a constraint on the rest of the system. If the option is left disabled then
no #define will be generated, and if there were any compile or similar properties these would not take effect. If the option
is enabled then a #define will be generated, using the option's data part which is fixed at 1:

#define CYGSEM_LIBC_PER_THREAD_RAND 1

The CYGSEM_LIBC_PER_THREAD_RAND option has a requires constraint on CYGVAR_KERNEL_THREADS_DATA. If
the C library option is enabled then the constraint should be satisfied, or else the configuration contains a conflict. If the
configuration does not include the kernel package then CYGVAR_KERNEL_THREADS_DATA will evaluate to 0 and the
constraint is not satisfied. Similarly if the option is inactive or disabled the constraint will not be satisfied.

CYGNUM_LIBC_RAND_SEED and CYGNUM_LIBC_RAND_TRACE_LEVEL both have the data flavor, so they are always
enabled and the component framework will generate appropriate #define's:

#define CYGNUM_LIBC_RAND_SEED 1
#define CYGNUM_LIBC_RAND_SEED_1
#define CYGNUM_LIBC_RAND_TRACE_LEVEL 0

36

The CDL Language

#define CYGNUM_LIBC_RAND_TRACE_LEVEL_0

Neither option has a compile or similar property, but any such properties would take effect. Any references
to these options in CDL expressions would evaluate to the data part, so a hypothetical constraint of the form
{ requires CYGNUM_LIBC_RAND_SEED > 42 } would not be satisfied with the default values. Both options use
a simple constant for the default_value expression. It would be possible to use a more complicated expression, for example
the default for CYGNUM_LIBC_RAND_TRACE_LEVEL could be determined from some global debugging option or from a
debugging option that applies to the C library as a whole. Both options also have a legal_values constraint, which must be
satisfied since the options are active and enabled.

Note

The value 0 is legal for both CYGNUM_LIBC_RAND_SEED and CYGNUM_LIBC_RAND_TRACE_LEVEL, so
in a CDL expression there is no easy way of distinguishing between the options being absent or having that
particular value. This will be addressed by future enhancements to the expression syntax.

Ordinary Expressions
Expressions in CDL follow a conventional syntax, for example:

default_value CYGGLO_CODESIZE > CYGGLO_SPEED
default_value { (CYG_HAL_STARTUP == "RAM" &&
 !CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS &&
 !CYGINT_HAL_USE_ROM_MONITOR_UNSUPPORTED &&
 !CYGSEM_HAL_POWERPC_COPY_VECTORS) ? 1 : 0 }
default_value { "\"/dev/ser0\"" }

However there is a complication in that the various arguments to a default_value property will first get processed by a Tcl
interpreter, so special characters like quotes and square brackets may get processed. Such problems can be avoided by enclosing
non-trivial expressions in braces, as in the second example above. The way expression parsing actually works is as follows:

1. The Tcl interpreter splits the line or lines into a command and its arguments. In the first default_value expression above
the command is default_value and there are three arguments, CYGGLO_CODESIZE, > and CYGGLO_SPEED. In the
second and third examples there is just one argument, courtesy of the braces.

2. Next option processing takes place, so any initial arguments that begin with a hyphen will be interpreted as options. This
can cause problems if the expression involves a negative number, so the special argument -- can be used to prevent option
processing on the subsequent arguments.

3. All of the arguments are now concatenated, with a single space in between each one. Hence the following two expressions
are equivalent, even though they will have been processed differently up to this point.

default_value CYGGLO_CODESIZE > CYGGLO_SPEED
default_value {CYGGLO_CODESIZE > CYGGLO_SPEED}

4. The expression parsing code now has a single string to process.

CDL expressions consist of four types of element: references to configuration options, constant strings, integers, and floating
point numbers. These are combined using a conventional set of operators: the unary operators -, ~ and !; the arithmetic
operators +, -, *, / and %; the shift operators << and >>; the comparison operators ==, !=, <, <=, > and >=; the bitwise
operators &, ^ and |; the logical operators && and ||; the string concatenation operator .; and the ternary conditional operator
A ? B : C. There is also support for some less widely available operators for logical equivalence and implication, and for
a set of function-style operations. Bracketed sub-expressions are supported, and the operators have the usual precedence:

Priority Operators Category

16 references, constants basic elements

15 f(a, b, c) function calls

14 ~ bitwise not

14 ! logical not

14 - arithmetic negation

37

The CDL Language

Priority Operators Category

13 * / % multiplicative arithmetic

12 + - . additive arithmetic and
string concatenation

11 << >> bitwise shifts

10 <= < > >= inequality

9 == != comparison

8 & bitwise and

7 ^ bitwise xor

6 | bitwise or

5 && logical and

4 || logical or

3 xor, eqv logical equivalance

2 implies logical implication

1 ? : conditional

Function calls have the usual format of a name, an opening bracket, one or more arguments separated by commas, and a closing
bracket. For example:

requires { !is_substr(CYGBLD_GLOBAL_CFLAGS, " -fno-rtti") }

Functions will differ in the number of arguments and may impose restrictions on some or all of their arguments. For example
it may be necessary for the first argument to be a reference to a configuration option. The available functions are described
in the section called “Functions”.

The logical xor operator evaluates to true if either the left hand side or the right hand side but not both evaluate to true
The logical eqv operator evaluates to true if both the left and right hand sides evaluate to true, or if both evaluate to false.
The implies operator evaluates to true either if the left hand side is false or if the right hand side is true, in other words
A implies B has the same meaning as !A || B. An example use would be:

requires { is_active(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE) implies
 (CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE >= (16 * 1024)) }

This constraint would be satisfied if either the support for a main stack size is disabled, or if that stack is at least 16K. However
if such a stack were in use but was too small, a conflict would be raised.

A valid CDL identifier in an expression, for example CYGGLO_SPEED, will be interpreted as a reference to a configuration
option by that name. The option does not have to be loaded into the current configuration. When the component framework
evaluates the expression it will substitute in a suitable value that depends on whether or not the option is loaded, active, and
enabled. The exact rules are described in the section called “Option Values”.

A constant string is any sequence of characters enclosed in quotes. Care has to be taken that these quotes are not stripped off
by the Tcl interpreter before the CDL expression parser sees them. Consider the following:

default_value "RAM"

The quote marks will be stripped before the CDL expression parser sees the data, so the expression will be interpreted as a
reference to a configuration option RAM. There is unlikely to be such an option, so the actual default value will be 0. Careful
use of braces or other Tcl quoting mechanisms can be used to avoid such problems.

String constants consist of the data inside the quotes. If the data itself needs to contain quote characters then appropriate quoting
is again necessary, for example:

default_value { "\"/dev/ser0\"" }

An integer constant consists of a sequence of digits, optionally preceeded with the unary + or - operators. As usual the sequence
0x or 0X can be used for hexadecimal data, and a leading 0 indicates octal data. Internally the component framework uses

38

The CDL Language

64-bit arithmetic for integer data. If a constant is too large then double precision arithmetic will be used instead. Traditional
syntax is also used for double precision numbers, for example 3.141592 or -3E6.

Of course this is not completely accurate: CDL is not a typed language, all data is treated as if it were a string. For example
the following two lines are equivalent:

requires CYGNUM_UITRON_SEMAS > 10
requires { CYGNUM_UITRON_SEMAS > "10" }

When an expression gets evaluated the operators will attempt appropriate conversions. The > comparison operator can be used
on either integer or double precision numbers, so it will begin by attempting a string to integer conversion of both operands. If
that fails it will attempt string to double conversions. If that fails as well then the component framework will report a conflict,
an evaluation exception. If the conversions from string to integer are successful then the result will be either the string 0 or the
string 1, both of which can be converted to integers or doubles as required.

It is worth noting that the expression CYGNUM_UITRON_SEMAS >10 is not ambiguous. CDL identifiers can never begin
with a digit, so it is not possible for 10 to be misinterpreted as a reference to an identifier instead of as a string.

Of course the implementation is slightly different again. The CDL language definition is such that all data is treated as if it
were a string, with conversions to integer, double or boolean as and when required. The implementation is allowed to avoid
conversions until they are necessary. For example, given CYGNUM_UITRON_SEMAS > 10 the expression parsing code will
perform an immediate conversion from string to integer, storing the integer representation, and there is no need for a conversion
by the comparison operator when the expression gets evaluated. Given { CYGNUM_UITRON_SEMAS > "10" } the parsing
code will store the string representation and a conversion happens the first time the expression is evaluated. All of this is an
implementation detail, and does not affect the semantics of the language.

Different operators have different requirements, for example the bitwise or operator only makes sense if both operands have
an integer representation. For operators which can work with either integer or double precision numbers, integer arithmetic
will be preferred.

The following operators only accept integer operands: unary ~ (bitwise not), the shift operators << and >>, and the bitwise
operators &, | and ^.

The following operators will attempt integer arithmetic first, then double precision arithmetic: unary -, the arithmetic operators
+, -, *, /, and %; and the comparision operators <, <=, > and >=.

The equality == and inequality != operators will first attempt integer conversion and comparison. If that fails then double
precision will be attempted (although arguably using these operators on double precision data is not sensible). As a last resort
string comparison will be used.

The operators !, && and || all work with boolean data. Any string that can be converted to the integer 0 or the double 0.0
is treated as false, as is the empty string or the constant string false. Anything else is interpreted as true. The result is either
0 or 1.

The conditional operator ? : will interpret its first operand as a boolean. It does not perform any processing on the second
or third operands.

In practice it is rarely necessary to worry about any of these details. In nearly every case CDL expressions just work as expected,
and there is no need to understand the full details.

Note

The current expression syntax does not meet all the needs of component writers. Some future enhancements will
definitely be made, others are more controversial. The list includes the following:

1. An option's value is determined by several different factors: whether or not it is loaded, whether or not it is
active, whether or not it is enabled, and the data part. Currently there is no way of querying these individually.
This is very significant in the context of options with the bool or booldata flavors, because there is no
way of distinguishing between the option being absent/inactive/disabled or it being enabled with a data field
of 0. There should be unary operators that allow any of the factors to be checked.

2. Only the == and != operators can be used for string data. More string-related facilities are needed.

39

The CDL Language

3. An implies operator would be useful for many goal expression, where A implies B is equivalent to !A ||B.

4. Similarly there is inadequate support for lists. On occasion it would be useful to write expressions involving
say the list of implementors of a given CDL interface, for example a sensible default value could be the first
implementor. Associated with this is a need for an indirection operator.

5. Arguably extending the basic CDL expression syntax with lots of new operators is unnecessary, instead
expressions should just support Tcl command substitution and then component writers could escape into Tcl
scripts for complicated operations. This has some major disadvantages. First, the inference engine would
no longer have any sensible way of interpreting an expression to resolve a conflict. Second, the component
framework's value propagation code keeps track of which options get referenced in which expressions and
avoids unnecessary re-evaluation of expressions; if expressions can involve arbitrary Tcl code then there is no
simple way to eliminate unnecessary recalculations, with a potentially major impact on performance.

Note

The current implementation of the component framework uses 64 bit arithmetic on all host platforms. Although
this is adequate for current target architectures, it may cause problems in future. At some stage it is likely that an
arbitrary precision integer arithmetic package will be used instead.

Functions
CDL expressions can contain calls to a set of built-in functions using the usual syntax, for example;

requires { !is_substr(CYGBLD_GLOBAL_CFLAGS, "-fno-rtti") }

The available function calls are as follows:

get_data(option) This function can be used to obtain just the data part of a loaded configuration option,
ignoring other factors such as whether or not the option is active and enabled. It takes
a single argument which should be the name of a configuration option. If the specified
option is not loaded in the current configuration then the function returns 0, otherwise
it returns the data part. Typically this function will only be used in conjunction with
is_active and is_enabled for fine-grained control over the various factors that
make up an option's value.

is_active(option) This function can be used to determine whether or not a particular configuration option
is active. It takes a single argument which should be the name of an option, and returns
a boolean. If the specified option is not loaded then the function will return false.
Otherwise it will consider the state of the option's parents and evaluate any active_if
properties, and return the option's current active state. A typical use might be:

requires { is_active(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE) implies
 (CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE >= (16 * 1024)) }

In other words either the specified configuration option must be inactive, for example
because the current application does not use any related C library or POSIX
functionality, or the stack size must be at least 16K.

The configuration system's inference engine can attempt to satisfy constraints involving
is_active in various different ways, for example by enabling or disabling parent
components, or by examining active_if properties and manipulating terms in the
associated expressions.

is_enabled(option) This function can be used to determine whether or not a particular configuration option
is enabled. It takes a single argument which should be the name of an option, and
returns a boolean. If the specified option is not loaded then the function will return false.
Otherwise it will return the current boolean part of the option's value. The option's active
or inactive state is ignored. Typically this function will be used in conjunction with

40

The CDL Language

is_active and possibly get_data to provide fine-grained control over the various
factors that make up an option's value.

is_loaded(option) This function can be used to determine whether or not a particular configuration option
is loaded. It takes a single argument which should be the name of an option, and returns
a boolean. If the argument is a package then the is_loaded function provides little or
no extra information, for example the following two constraints are usually equivalent:

requires { CYGPKG_KERNEL }
requires { is_loaded(CYGPKG_KERNEL) }

However if the specified package is loaded but re-parented below a disabled component,
or inactive as a result of an active_if property, then the first constraint would not
be satisfied but the second constraint would. In other words the is_loaded makes
it possible to consider in isolation one of the factors that are considered when CDL
expressions are evaluated.

The configuration system's inference engine will not automatically load or unload
packages to satisfy is_loaded constraints.

is_substr(haystack, needle)This can be used to check whether or not a particular string is present in another string.
It is used mainly for manipulating compiler flags. The function takes two arguments,
both of which can be arbitrary expressions, and returns a boolean.

is_substr has some understanding of word boundaries. If the second argument starts
with a space character then that will match either a real space or the start of the string.
Similarly if the second argument ends with a space character then that will match a real
space or the end of the string. For example, all of the following conditions are satisfied:

is_substr("abracadabra", "abra")
is_substr("abracadabra", " abra")
is_substr("hocus pocus", " pocus")
is_substr("abracadabra", "abra ")

The first is an exact match. The second is a match because the leading space matches
the start of the string. The third is an exact match, with the leading space matching an
actual space. The fourth is a match because the trailing space matches the end of the
string. However, the following condition is not satisfied.

is_substr("abracadabra", " abra ")

This fails to match at the start of the string because the trailing space is not matched
by either a real space or the end of the string. Similarly it fails to match at the end of
the string.

If a constraint involving is_substr is not satisfied and the first argument is a
reference to a configuration option, the inference engine will attempt to modify that
option's value. This can be achieved either by appending the second argument to the
current value, or by removing all occurrences of that argument from the current value.

requires { !is_substr(CYGBLD_GLOBAL_CFLAGS, " -fno-rtti ") }
requires { is_substr(CYGBLD_GLOBAL_CFLAGS, " -frtti ") }

When data is removed the leading and trailing spaces will be left. For example, given
an initial value of <CYGBLD_GLOBAL_CFLAGS of -g -fno-rtti -O2 the result
will be -g -O2 rather than -g-O2.

If exact matches are needed, the function is_xsubstr can be used instead.

is_xsubstr(haystack, needle)This function checks whether or not the pattern string is an exact substring of the string
being searched. It is similar to is_substr but uses exact matching only. In other
words, leading or trailing spaces have to match exactly and will not match the beginning
or end of the string being searched. The function takes two arguments, both of which can

41

The CDL Language

be arbitrary expressions, and returns a boolean. The difference between is_substr
and is_xsubstr is illustrated by the following examples:

cdl_option MAGIC {
 flavor data
 default_value { "abracadabra" }
}
…
requires { is_substr(MAGIC, " abra") }
requires { is_xsubstr(MAGIC, " abra") }

The first goal will be satisfied because the leading space in the pattern matches the
beginning of the string. The second goal will not be satisfied initialy because there
is no exact match, so the inference engine is likely to update the value of MAGIC to
abracadabra abra which does give an exact match.

version_cmp(A, B) This function is used primarily to check that a sufficiently recent version of some
other package is being used. It takes two arguments, both of which can be arbitrary
expressions. In practice usually one of the arguments will be a reference to a package
and the other will be a constant version string. The return value is -1 if the first
argument is a more recent version then the second, 0 if the two arguments correspond
to identical versions, and 1 if the first argument is an older version. For example the
following constraint can be used to indicate that the current package depends on kernel
functionality that only became available in version 1.3:

requires { version_cmp(CYGPKG_KERNEL, "v1.3") <= 0 }

Note

At this time it is not possible to define new functions inside a CDL script. Instead functions can only be added at
the C++ level, usually by extending libcdl itself. This is partly because there is more to CDL functions than simple
evaluation: associated with most functions is support for the inference engine, so that if a constraint involving a
function is not currently satisfied the system may be able to find a solution automatically.

Goal Expressions
The arguments to certain properties, notably requires and active_if, constitute a goal expression. As with an ordinary expression,
all of the arguments get combined and then the expression parser takes over. The same care has to be taken with constant strings
and anything else that may get processed by the Tcl interpreter, so often a goal expression is enclosed entirely in braces and
the expression parsing code sees just a single argument.

A goal expression is basically just a sequence of ordinary expressions, for example:

requires { CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
 !CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
 !CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT }

This consists of three separate expressions, all of which should evaluate to a non-zero result. The same expression could be
written as:

requires { CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS &&
 !CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT &&
 !CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT }

Alternatively the following would have much the same effect:

requires CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
requires !CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
requires !CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT

Selecting between these alternatives is largely a stylistic choice. The first is slightly more concise than the others. The second
is more likely to appeal to mathematical purists. The third is more amenable to cutting and pasting.

The result of evaluating a goal expression is a boolean. If any part of the goal expression evaluates to the integer 0 or an
equivalent string then the result is false, otherwise it is true.

42

The CDL Language

The term “goal expression” relates to the component framework's inference engine: it is a description of a goal that should
be satisfied for a conflict-free configuration. If a requires constraint is not satisfied then the inference engine will examine the
goal expression: if there is some way of changing the configuration that does not introduce new conflicts and that will cause
the goal expression to evaluate to true, the conflict can be resolved.

The inference engine works with one conflict and hence one goal expression at a time. This means that there can be slightly
different behavior if a constraint is specified using a single requires property or several different ones. Given the above example,
suppose that none of the three conditions are satisfied. If a single goal expression is used then the inference engine might be able
to satisfy only two of the three parts, but since the conflict as a whole cannot be resolved no part of the solution will be applied.
Instead the user will have to resolve the entire conflict. If three separate goal expressions are used then the inference engine
might well find solutions to two of them, leaving less work for the user. On the other hand, if a single goal expression is used
then the inference engine has a bit more information to work with, and it might well find a solution to the entire conflict where
it would be unable to find separate solutions for the three parts. Things can get very complicated, and in general component
writers should not worry about the subtleties of the inference engine and how to manipulate its behavior.

It is possible to write ambiguous goal expressions, for example:

requires CYGNUM_LIBC_RAND_SEED -CYGNUM_LIBC_RAND_TRACE_LEVEL > 5

This could be parsed in two ways:

requires ((CYGNUM_LIBC_RAND_SEED - CYGNUM_LIBC_RAND_TRACE_LEVEL) > 5)
requires CYGNUM_LIBC_RAND_SEED && ((-CYGNUM_LIBC_RAND_TRACE_LEVEL) > 5)

The goal expression parsing code will always use the largest ordinary expression for each goal, so the first interpretation will
be used. In such cases it is a good idea to use brackets and avoid possible confusion.

List Expressions
The arguments to the legal_values property constitute a goal expression. As with an ordinary and goal expressions, all of the
arguments get combined and then the expression parser takes over. The same care has to be taken with constant strings and
anything else that may get processed by the Tcl interpreter, so often a list expression is enclosed entirely in braces and the
expression parsing code sees just a single argument.

Most list expressions take one of two forms:

legal_values <expr1> <expr2> <expr3> ...
legal_values <expr1> to <expr2>

expr1, expr2 and so on are ordinary expressions. Often these will be constants or references to calculated options in the
architectural HAL package, but it is possible to use arbitrary expressions when necessary. The first syntax indicates a list
of possible values, which need not be numerical. The second syntax indicates a numerical range: both sides of the to must
evaluate to a numerical value; if either side involves a floating point number then any floating point number in that range is
legal; otherwise only integer values are legal; ranges are inclusive, so 4 is a valid value given a list expression 1 to ; if
one or both sides of the to does not evaluate to a numerical value then this will result in a run-time conflict. The following
examples illustrate these possibilities:

legal_values { "red" "green" "blue" }
legal_values 1 2 4 8 16
legal_values 1 to CYGARC_MAXINT
legal_values 1.0 to 2.0

It is possible to combine the two syntaxes, for example:

legal_values 1 2 4 to CYGARC_MAXINT -1024 -20.0 to -10

This indicates three legal values 1, 2 and -1024, one integer range 4 to CYGARC_MAXINT, and one floating point range
-20.0 to -10.0. In practice such list expressions are rarely useful.

The identifier to is not reserved, so it is possible to have a configuration option with that name (although it violates every
naming convention). Using that option in a list expression may however give unexpected results.

The graphical configuration tool uses the legal_values list expression to determine how best to let users manipulate the option's
value. Different widgets will be appropriate for different lists, so { "red" "green" "blue" } might involve a pull-

43

The CDL Language

down option menu, and 1 to 16 could involve a spinner. The exact way in which legal_values lists get mapped on to GUI
widgets is not defined and is subject to change at any time.

As with goal expressions, list expressions can be ambiguous. Consider the following hypothetical example:

legal_values CYGNUM_LIBC_RAND_SEED -CYGNUM_LIBC_RAND_TRACE_LEVEL

This could be parsed in two ways:

legal_values (CYGNUM_LIBC_RAND_SEED - CYGNUM_LIBC_RAND_TRACE_LEVEL)
legal_values (CYGNUM_LIBC_RAND_SEED) (-CYGNUM_LIBC_RAND_TRACE_LEVEL)

Both are legal. The list expression parsing code will always use the largest ordinary expression for each element, so the first
interpretation will be used. In cases like this it is a good idea to use brackets and avoid possible confusion.

Interfaces
For many configurability requirements, options provide sufficient expressive power. However there are times when a higher
level of abstraction is appropriate. As an example, suppose that some package relies on the presence of code that implements
the standard kernel scheduling interface. However the requirement is no more stringent than this, so the constraint can be
satisfied by the mlqueue scheduler, the bitmap scheduler, or any additional schedulers that may get implemented in future. A
first attempt at expressing the dependency might be:

requires CYGSEM_KERNEL_SCHED_MLQUEUE || CYGSEM_KERNEL_SCHED_BITMAP

This constraint will work with the current release, but it is limited. Suppose there is a new release of the kernel which adds
another scheduler such as a deadline scheduler, or suppose that there is a new third party package which adds such a scheduler.
The package containing the limited constraint would now have to be updated and another release made, with possible knock-
on effects.

CDL interfaces provide an abstraction mechanism: constraints can be expressed in terms of an abstract concept,
for example “scheduler”, rather than specific implementations such as CYGSEM_KERNEL_SCHED_MLQUEUE and
CYGSEM_KERNEL_SCHED_BITMAP. Basically an interface is a calculated configuration option:

cdl_interface CYGINT_KERNEL_SCHEDULER {
 display "Number of schedulers in this configuration"
 …
}

The individual schedulers can then implement this interface:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
 display "Multi-level queue scheduler"
 default_value 1
 implements CYGINT_KERNEL_SCHEDULER
 …
}
cdl_option CYGSEM_KERNEL_SCHED_BITMAP {
 display "Bitmap scheduler"
 default_value 0
 implements CYGINT_KERNEL_SCHEDULER
 …
}

Future schedulers can also implement this interface. The value of an interface, for the purposes of expression evaluation, is
the number of active and enabled options which implement this interface. Packages which rely on the presence of a scheduler
can impose constraints such as:

requires CYGINT_KERNEL_SCHEDULER

If none of the schedulers are enabled, or if the kernel package is not loaded, then CYGINT_KERNEL_SCHEDULER will
evaluate to 0. If at least one scheduler is active and enabled then the constraint will be satisfied.

Because interfaces have a calculated value determined by the implementors, the default_value and calculated properties are not
applicable and should not appear in the body of a cdl_interface command. Interfaces have the data flavor by default,

44

The CDL Language

but the bool and booldata flavors may be specified instead. A bool interface is disabled if there are no active and enabled
implementors, otherwise it is enabled. A booldata interface is disabled if there are no active and enabled implementors,
otherwise it is enabled and has a value corresponding to the number of these implementors. Other properties such as requires
and compile can be used as normal.

Some component writers will not want to use interfaces in this way. The reasoning is that their code will only have been tested
with the existing schedulers, so the requires constraint needs to be expressed in terms of those schedulers; it is possible that
the component will still work with a new scheduler, but there are no guarantees. Other component writers may take a more
optimistic view and assume that their code will work with any scheduler until proven otherwise. It is up to individual component
writers to decide which approach is most appropriate in any given case.

One common use for interfaces is to describe the hardware functionality provided by a given target. For example the CDL
scripts for a TCP/IP package might want to know whether or not the target hardware has an ethernet interface. Generally
it is not necessary for the TCP/IP stack to know exactly which ethernet hardware is present, since there should be a device
driver which implements the appropriate functionality. In CDL terms the device drivers should implement an interface
CYGHWR_NET_DRIVERS, and the CDL scripts for the TCP/IP stack can use this in appropriate expressions.

Note

Using the term interface for this concept is sometimes confusing, since the term has various other meanings as
well. In practice, it is often correct. If there is a configuration option that implements a given CDL interface, then
usually this option will enable some code that provides a particular interface at the C or C++ level. For example
an ethernet device driver implements the CDL interface CYGHWR_NET_DRIVERS, and also implements a set of
C functions that can be used by the TCP/IP stack. Similarly CYGSEM_KERNEL_SCHED_MLQUEUE implements
the CDL interface CYGINT_KERNEL_SCHEDULER and also provides the appropriate scheduling functions.

Updating the ecos.db database
The current implementation of the component framework requires that all packages be present in a single component repository
and listed in that repository's ecos.db database. This is not generally a problem for application developers who can consider the
component repository a read-only resource, except when adding or removing packages via the administration tool. However
it means that component writers need to do their development work inside a component repository as well, and update the
database with details of their new package or packages. Future enhancements to the component framework may allow new
components to be developed outside a repository.

Like most files related to the component framework, the ecos.db database is actually a Tcl script. Typical package entries
would look like this:

package CYGPKG_LIBC {
 alias { "C library" libc clib clibrary }
 directory language/c/libc
 script libc.cdli
 attributes { license_ecosgpl }
 description "
 This package enables compatibility with the ISO C standard - ISO/IEC
 9899:1990. This allows the user application to use well known standard
 C library functions, and in eCos starts a thread to invoke the user
 function main()"
}
package CYGPKG_IO_PCI {
 alias { "PCI configuration library" io_pci }
 directory io/pci
 script io_pci.cdl
 attributes { license_ecosgpl hardware_io }
 hardware
 description "
 This package contains the PCI configuration library."
}

The package command takes two arguments, a name and a body. The name must be the same as in the cdl_package
command in the package's top-level CDL script. The body can contain the following six commands: alias, directory,
script, attributes, hardware and description.

45

The CDL Language

alias Each package should have one or more aliases. The first alias is typically used when
listing the known packages, because a string like C library is a bit easier to
read and understand than CYGPKG_LIBC. The other aliases are not used for output,
but are accepted on input. For example the ecosconfig command-line tool will accept
add libc as an option, as well as add CYGPKG_LIBC.

directory This is used to specify the location of the package relative to the root of the component
repository. It should be noted that in the current component framework this location
cannot be changed in subsequent releases of the package: if for some reason it is
desirable to install a new release elsewhere in the repository, all the old versions must
first be uninstalled; the database cannot hold two separate locations for one package.

script The script command specifies the location of the package's top-level CDL script, in
other words the one containing the cdl_package definition. If the package follows the
directory layout conventions then this script will be in the cdl sub-directory, otherwise
it will be relative to the package's top-level directory. Again once a release has been made
this file should not change in later releases. In practice the top-level script is generally
named after the package itself, so changing its name is unlikely to be useful.

attributes The attributes command provides a set of descriptive names or values which
represent attributes of a package. These values are currently used to provide developers
with a means to group together packages with common attributes as an aid to package or
target selection, or to find or identify packages with certain attributes. For example, the
most common use is to identify the licensing under which the source code of a package
is distributed to assist with the adherence of the terms of the licenses.

hardware Packages which are tied to specific hardware, for example device drivers and HAL
packages, should indicate this in both the cdl_package command of the CDL script
and in the database entry.

description This should give a brief description of the package. Typically the text for the description
property in the cdl_package command will be re-used.

Note

Most of the information in the ecos.db file could be obtained by a relatively simple utility. This would be passed
a single argument identifying a package's top-level CDL script. The directory path relative to the component
repository root could be determined from the filename. The name, description and hardware fields could
be obtained from the script's cdl_package command. The display property would supply the first alias,
additional aliases could be obtained by extending the syntax of that property or by other means. Something along
these lines may be provided by a future release of the component framework.

Currently the ecos.db database also holds information about the various targets. When porting to a new target it will be necessary
to add information about the target to the database, as well as the details of the new platform HAL package and any related
packages.

46

Chapter 4. The Build Process
Some CDL properties describe the consequences of manipulating configuration options. There are two main types of
consequences. Typically enabling a configuration option results in one or more #define's in a configuration header file,
and properties that affect this include define, define_proc and no_define. Enabling a configuration option can also affect the
build process, primarily determining which files get built and added to the appropriate library. Properties related to the build
process include compile and make. This chapter describes the whole build process, including details such as compiler flags
and custom build steps.

Part of the overall design of the eCos component framework is that it can interact with a number of different build systems.
The most obvious of these is GNU make:the component framework can generate one or more makefiles, and the user can
then build the various packages simply by invoking make. However it should also be possible to build eCos by other means:
the component framework can be queried about what is involved in building a given configuration, and this information can
then be fed into the desired build system. Component writers should be aware of this possibility. Most packages will not be
affected because the compile property can be used to provide all the required information, but care has to be taken when writing
custom build steps.

Build Tree Generation
It is necessary to create an eCos configuration before anything can be built. With some tools such as the graphical configuration
tool this configuration will be created in memory, and it is not essential to produce an ecos.ecc savefile first (although
it is still very desirable to generate such a savefile at some point, to allow the configuration to be re-loaded later on). With
other tools the savefile is generated first, for example using ecosconfig new, and then a build tree is generated using
ecosconfig tree. The savefile contains all the information needed to recreate a configuration.

An eCos build actually involves three separate trees. The component repository acts as the source tree, and for application
developers this should be considered a read-only resource. The build tree is where all intermediate files, especially object files,
are created. The install tree is where the main library libtarget.a, the exported header files, and similar files end up.
Following a successful build it is possible to take just the install tree and use it for developing an application: none of the files
in the component repository or the build tree are needed for that. The build tree will be needed again only if the user changes
the configuration. However the install tree does not contain copies of all of the documentation for the various packages, instead
the documentation is kept only in the component repository.

By default the build tree, the install tree, and the ecos.ecc savefile all reside in the same directory tree. This is not a
requirement, both the install tree and the savefile can be anywhere in the file system.

It is worth noting that the component framework does not separate the usual make and make install stages. A build
always populates the install tree, and any make install step would be redundant.

The install tree will always begin with two directories, include for the exported header files and lib for the main library
libtarget.a and other files such as the linker script. In addition there will be a subdirectory include/pkgconf
containing the configuration header files, which are generated or updated at the same time the build tree is created or updated.
More details of header file generation are given below. Additional include subdirectories such as sys and cyg/kernel
will be created during the first build, when each package's exported header files are copied to the install tree. The install tree
may also end up with additional subdirectories during a build, for example as a result of custom build steps.

The component framework does not define the structure of the build tree, and this may vary between build systems. It can be
assumed that each package in the configuration will have its own directory in the build tree, and that this directory will be used
for storing the package's object files and as the current directory for any build steps for that package. This avoids problems
when custom build steps from different packages generate intermediate files which happen to have the same name.

Some build systems may allow application developers to copy a source file from the component repository to the build tree
and edit the copy. This allows users to experiment with small changes, for example to add a couple of lines of debugging to a
package, without having to modify the master copy in the component repository which could be shared by several projects or
several people. Functionality such as this is transparent to component writers, and it is the responsibility of the build system
to make sure that the right thing happens.

47

The Build Process

Note

There are some unresolved issues related to the build tree and install tree. Specifically, when updating an existing
build or install tree, what should happen to unexpected files or directories? Suppose the user started with a
configuration that included the math library, and the install tree contains header files include/math.h and
include/sys/ieeefp.h. The user then removed the math library from the configuration and is updating
the build tree. It is now desirable to remove these header files from the install tree, so that if any application code
still attempts to use the math library this will fail at compile time rather than at link time. There will also be some
object files in the existing libtarget.a library which are no longer appropriate, and there may be other files
in the install tree as a result of custom build steps. The build tree will still contain a directory for the math library,
which no longer serves any purpose.

However, it is also possible that some of the files in the build tree or the install tree were placed there by the user,
in which case removing them automatically would be a bad idea.

At present the component framework does not keep track of exactly what should be present in the build and
install trees, so it cannot readily determine which files or library members are obsolete and can safely be removed,
and which ones are unexpected and need to be reported to the user. This will be addressed in a future release
of the system.

Configuration Header File Generation
Configuration options can affect a build in two main ways. First, enabling a configuration option or other CDL entity can result
in various files being built and added to a library, thus providing functionality to the application code. However this mechanism
can only operate at a rather coarse grain, at the level of entire source files. Hence the component framework also generates
configuration header files containing mainly C preprocessor #define directives. Package source code can then #include
the appropriate header files and use #if, #ifdef and #ifndef directives to adapt accordingly. In this way configuration
options can be used to enable or disable entire functions within a source file or just a single line, whichever is appropriate.

The configuration header files end up in the include/pkgconf subdirectory of the install tree. There will be one header
file for the system as a whole, pkgconf/system.h, and there will be additional header files for each package, for example
pkgconf/kernel.h. The header files are generated when creating or updating the build and install trees, which needs to
happen after every change to the configuration.

The component framework processes each package in the configuration one at a time. The exact order in which the packages
are processed is not defined, so the order in which #define's will end up in the global pkgconf/system.h header may
vary. However for any given configuration the order should remain consistent until packages are added to or removed from
the system. This avoids unnecessary changes to the global header file and hence unnecessary rebuilds of the packages and of
application code because of header file dependency handling.

Within a given package the various components, options and interfaces will be processed in the order in which they were defined
in the corresponding CDL scripts. Typically the data in the configuration headers consists only of a sequence of #define's
so the order in which these are generated is irrelevant, but some properties such as define_proc can be used to add arbitrary
data to a configuration header and hence there may be dependencies on the order. It should be noted that re-parenting an option
below some other package has no effect on which header file will contain the corresponding #define: the preprocessor
directives will always end up in the header file for the package that defines the option, or in the global configuration header.

There are six properties which affect the process of generating header files: define_header, no_define, define_format, define,
if_define, and define_proc.

The define_header property can only occur in the body of a cdl_package command and specifies the name of the header
file which should contain the package's configuration data, for example:

cdl_package <some_package> {
 …
 define_header xyzzy.h
}

Given such a define_header property the component framework will use the file pkgconf/xyzzy.h for the package's
configuration data. If a package does not have a define_header property then a suitable file name is constructed from the
package's name. This involves:

48

The Build Process

1. All characters in the package name up to and including the first underscore are removed. For example CYGPKG_KERNEL
is converted to KERNEL, and CYGPKG_HAL_ARM is converted to HAL_ARM.

2. Any upper case letters in the resulting string will be converted to lower case, yielding e.g. kernel and hal_arm.

3. A .h suffix is appended, yielding e.g. kernel.h and hal_arm.h.

Because of the naming restrictions on configuration options, this should result in a valid filename. There is a small possibility
of a file name class, for example CYGPKG_PLUGH and CYGPKG_plugh would both end up trying to use the same header file
pkgconf/plugh.h, but the use of lower case letters for package names violates the naming conventions. It is not legal to
use the define_header property to put the configuration data for several packages in a single header file. The resulting behaviour
is undefined.

Once the name of the package's header file has been determined and the file has been opened, the various components, options
and interfaces in the package will be processed starting with the package itself. The following steps are involved:

1. If the current option or other CDL entity is inactive or disabled, the option is ignored for the purposes of header file
generation. #define's are only generated for options that are both active and enabled.

2. The next step is to generate a default #define for the current option. If this option has a no_define property then the
default #define is suppressed, and processing continues for define, if_define and define_proc properties.

a. The header file appropriate for the default #define is determined. For a cdl_package this will be pkgconf/
system.h, for any other option this will be the package's own header file. The intention here is that packages and
application code can always determine which packages are in the configuration by #include'ing pkgconf/
system.h. The C preprocessor lacks any facilities for including a header file only if it exists, and taking appropriate
action otherwise.

b. For options with the flavors bool or none, a single #define will be generated. This takes the form:

#define <option> 1

For example:

#define CYGFUN_LIBC_TIME_POSIX 1

Package source code can check whether or not an option is active and enabled by using the #ifdef, #ifndef or #if
defined(…)directives.

c. For options with the flavors data or booldata, either one or two #define's will be generated. The first of these
may be affected by a define_format property. If this property is not defined then the first #define will take the form:

#define <option> <value>

For example:

#define CYGNUM_LIBC_ATEXIT_HANDLERS 32

Package source code can examine this value using the #if directive, or by using the symbol in code such as:

for (i = 0; i < CYGNUM_LIBC_ATEXIT_HANDLERS; i++) {
 …
}

It must be noted that the #define will be generated only if the corresponding option is both active and enabled. Options
with the data flavor are always enabled but may not be active. Code like the above should be written only if it is known
that the symbol will always be defined, for example if the corresponding source file will only get built if the containing
component is active and enabled. Otherwise the use of additional #ifdef or similar directives will be necessary.

d. If there is a define_format property then this controls how the option's value will appear in the header file. Given a format
string such as %08x and a value 42, the component framework will execute the Tcl command format %08x 42 and
the result will be used for the #define's value. It is the responsibility of the component writer to make sure that this
Tcl command will be valid given the format string and the legal values for the option.

49

The Build Process

e. In addition a second #define may or may not be generated. This will take the form:

#define <option>_<value>

For example:

#define CYGNUM_LIBC_ATEXIT_HANDLERS_32

The #define will be generated only if it would result in a valid C preprocessor symbol. If the value is a string such as
"/dev/ser0" then the #define would be suppressed. This second #define is not particularly useful for numerical
data, but can be valuable in other circumstances. For example if the legal values for an option XXX_COLOR are red,
green and blue then code like the following can be used:

#ifdef XXX_COLOR_red
 …
#endif
#ifdef XXX_COLOR_green
 …
#endif
#ifdef XXX_COLOR_blue
 …
#endif

The expression syntax provided by the C preprocessor is limited to numerical data and cannot perform string comparisons.
By generating two #define's in this way it is possible to work around this limitation of the C preprocessor. However
some care has to be taken: if a component writer also defined a configuration option XXX_COLOR_green then there
will be confusion. Since such a configuration option violates the naming conventions, the problem is unlikely to arise
in practice.

3. For some options it may be useful to generate one or more additional #define's or, in conjunction with the no_define
property, to define a symbol with a name different from the option's name. This can be achieved with the define property,
which takes the following form:

define [-file=<filename>] [-format=<format>] <symbol>

For example:

define FOPEN_MAX

This will result in something like:

#define FOPEN_MAX 8
#define FOPEN_MAX_8

The specified symbol must be a valid C preprocessor symbol. Normally the #define will end up in the same header file as
the default one, in other words pkgconf/system.h in the case of a cdl_package, or the package's own header file for
any other option. The -file option can be used to change this. At present the only legal value is system.h, for example:

define -file=system.h <symbol>

This will cause the #define to end up in the global configuration header rather than in the package's own header. Use of
this facility should be avoided since it is very rarely necessary to make options globally visible.

The define property takes another option, -format, to provide a format string.

define -format=%08x <symbol>

This should only be used for options with the data or booldata flavor, and has the same effect as the define_format
property has on the default #define.

define properties are processed in the same way the default #define. For options with the bool or none flavors a
single #define will be generated using the value 1. For options with the data or booldata flavors either one or two
#define's will be generated.

50

The Build Process

4. After processing all define properties, the component framework will look for any if_define properties. These take the
following form:

if_define [-file=<filename>] <symbol1> <symbol2>

For example:

if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS

The following will be generated in the configuration header file:

#ifdef CYGSRC_KERNEL
define CYGDBG_USE_ASSERTS
#endif

Typical kernel source code would begin with the following construct:

#define CYGSRC_KERNEL 1
#include <pkgconf/kernel.h>
#include <cyg/infra/cyg_ass.h>

The infrastructure header file cyg/infra/cyg_ass.h only checks for symbols such as CYGDBG_USE_ASSERTS, and
has no special knowledge of the kernel or any other package. The if_define property will only affect code that defines
the symbol CYGSRC_KERNEL, so typically only kernel source code. If the option is enabled then assertion support will
be enabled for the kernel source code only. If the option is inactive or disabled then kernel assertions will be disabled.
Assertions in other packages are not affected. Thus the if_define property allows control over assertions, tracing, and similar
facilities at the level of individual packages, or at finer levels such as components or even single source files if desired.

Note

Current eCos packages do not yet make use of this facility. Instead there is a single global configuration option
CYGDBG_USE_ASSERTS which is used to enable or disable assertions for all packages. This issue should
be addressed in a future release of the system.

As with the define property, the if_define property takes an option -file with a single legal value system.h. This allows
the output to be redirected to pkgconf/system.h if and when necessary.

5. The final property that is relevant to configuration header file generation is define_proc. This takes a single argument, a Tcl
fragment that can add arbitrary data to the global header pkgconf/system.h and to the package's own header. When
the define_proc script is invoked two variables will be set up to allow access to these headers: cdl_header will be a
channel to the package's own header file, for example pkgconf/kernel.h; cdl_system_header will be a channel
to pkgconf/system.h. A typical define_proc script will use the Tcl puts command to output data to one of these
channels, for example:

cdl_option <name> {
 …
 define_proc {
 puts $::cdl_header "#define XXX 1"
 }
}

Note

In the current implementation the use of define_proc is limited because the Tcl script cannot access any of the
configuration data. Therefore the script is limited to writing constant data to the configuration headers. This
is a major limitation which will be addressed in a future release of the component framework.

Note

Generating C header files with #define's for the configuration data suffices for existing packages written in
some combination of C, C++ and assembler. It can also be used in conjunction with some other languages, for
example by first passing the source code through the C preprocessor and feeding the result into the appropriate
compiler. In future versions of the component framework additional programming languages such as Java may

51

The Build Process

be supported, and the configuration data may also be written to files in some format other than C preprocessor
directives.

Note

At present there is no way for application or package source code to get hold of all the configuration details
related to the current hardware. Instead that information is spread over various different configuration headers
for the HAL and device driver packages, with some of the information going into pkgconf/system.h. It is
possible that in some future release of the system there will be another global configuration header file pkgconf/
hardware.h which either contains the configuration details for the various hardware-specific packages or
which #include's all the hardware-specific configuration headers. The desirability and feasibility of such
a scheme are still to be determined. To avoid future incompatibility problems as a result of any such changes,
it is recommended that all hardware packages (in other packages containing the hardware property) use the
define_header property to specify explicitly which configuration header should be generated.

The system.h Header
Typically configuration header files are #include'd only by the package's source code at build time, or by a package's
exported header files if the interface provided by the package may be affected by a configuration option. There should be no
need for application code to know the details of individual configuration options, instead the configuration should specifically
meet the needs of the application.

There are always exceptions. Application code may want to adapt to configuration options, for example to do different things
for ROM and RAM booting systems, or when it is necessary to support several different target boards. This is especially true
if the code in question is really re-usable library code which has not been converted to an eCos package, and hence cannot
use any CDL facilities.

A major problem here is determining which packages are in the configuration: attempting to #include a header file such
as pkgconf/net.h when it is not known for certain that that particular package is part of the configuration will result in
compilation errors. The global header file pkgconf/system.h serves to provide such information, so application code can
use techniques like the following:

#include <pkgconf/system.h>
#ifdef CYGPKG_NET
include <pkgconf/net.h>
#endif

This will compile correctly irrespective of the eCos configuration, and subsequent code can use #ifdef or similar directives
on CYGPKG_NET or any of the configuration options in that package.

In addition to determining whether or not a package is present, the global configuration header file can also be used to find out
the specific version of a package that is being used. This can be useful if a more recent version exports additional functionality.
It may also be necessary to adapt to incompatible changes in the exported interface or to changes in behaviour. For each package
the configuration system will typically #define three symbols, for example for a V1.3.1 release:

#define CYGNUM_NET_VERSION_MAJOR 1
#define CYGNUM_NET_VERSION_MINOR 3
#define CYGNUM_NET_VERSION_RELEASE 1

There are a number of problems associated with such version #define's. The first restriction is that the package must follow
the standard naming conventions, so the package name must be of the form xxxPKG_yyy. The three characters immediately
preceding the first underscore must be PKG, and will be replaced with NUM when generating the version #define's. If a
package does not follow the naming convention then no version #define's will be generated.

Assuming the package does follow the naming conventions, the configuration tools will always generate three version
#define's for the major, minor, and release numbers. The symbol names are obtained from the package name by replacing
PKG with NUM and appending _VERSION_MAJOR, _VERSION_MINOR and _VERSION_RELEASE. It is assumed that the
resulting symbols will not clash with any configuration option names. The values for the #define's are determined by
searching the version string for sequences of digits, optionally preceded by a minus sign. It is possible that some or all of the
numbers are absent in any given version string, in which case -1 will be used in the #define. For example, given a version
string of V1.12beta, the major version number is 1, the minor number is 12, and the release number is -1. Given a version
string of beta all three numbers would be set to -1.

52

The Build Process

There is special case code for the version current, which typically corresponds to a development version obtained
via anonymous CVS or similar means. The configuration system has special built-in knowledge of this version, and will
assume it is more recent than any specific release number. The global configuration header defines a special symbol
CYGNUM_VERSION_CURRENT, and this will be used as the major version number when version current of a package
is used:

#define CYGNUM_VERSION_CURRENT 0x7fffff00
...
#define CYGNUM_INFRA_VERSION_MAJOR CYGNUM_VERSION_CURRENT
#define CYGNUM_INFRA_VERSION_MINOR -1
#define CYGNUM_INFRA_VERSION_RELEASE -1

The large number used for CYGNUM_VERSION_CURRENT should ensure that major version comparisons work as expected,
while still allowing for a small amount of arithmetic in case that proves useful.

It should be noted that this implementation of version #define's will not cope with all version number schemes. However
for many cases it should suffice.

Building eCos
The primary goal of an eCos build is to produce the library libtarget.a. A typical eCos build will also generate a number
of other targets: extras.o, startup code vectors.o, and a linker script. Some packages may cause additional libraries or
targets to be generated. The basic build process involves a number of different phases with corresponding priorities. There are
a number of predefined priorities:

Priority Action

0 Export header files

100 Process compile properties and most make_object custom build steps

200 Generate libraries

300 Process make custom build steps

Generation of the extras.o file, the startup code and the linker script actually happens via make custom build steps, typically
defined in appropriate HAL packages. The component framework has no special knowledge of these targets.

By default custom build steps for a make_object property happen during the same phase as most compilations, but this can be
changed using a -priority option. Similarly custom build steps for a make property happen at the end of a build, but this
can also be changed with a -priority option. For example a priority of 50 can be used to run a custom build step between
the header file export phase and the main compilation phase. Custom build steps are discussed in more detail below.

Some build systems may run several commands of the same priority in parallel. For example files listed in compile properties
may get compiled in parallel, concurrently with make_object custom build steps with default priorities. Since most of the time
for an eCos build involves processing compile properties, this allows builds to be speeded up on suitable host hardware. All
build steps for a given phase will complete before the next phase is started.

Updating the Build Tree
Some build systems may involve a phase before the header files get exported, to update the build and install trees automatically
when there has been a change to the configuration savefile ecos.ecc. This is useful mainly for application developers
using the command line tools: it would allow users to create the build tree only once, and after any subsequent configuration
changes the tree would be updated automatically by the build system. The facility would be analogous to the --enable-
maintainer-mode option provide by the autoconf and automake programs. At present no eCos build system implements
this functionality, but it is likely to be added in a future release.

Exporting Public Header Files
The first compulsory phase involves making sure that there is an up to date set of header files in the install tree. Each package
can contain some number of header files defining the exported interface. Applications should only use exported functionality.
A package can also contain some number of private header files which are only of interest to the implementation, and which
should not be visible to application code. The various packages that go into a particular configuration can be spread all over

53

The Build Process

the component repository. In theory it might be possible to make all the exported header files accessible by having a lengthy
-I header file search path, but this would be inconvenient both for building eCos and for building applications. Instead all
the relevant header files are copied to a single location, the include subdirectory of the install tree. The process involves
the following:

1. The install tree, for example /usr/local/ecos/install, and its include subdirectory /usr/local/ecos/
install/include will typically be created when the build tree is generated or updated. At the same time configuration
header files will be written to the pkgconf subdirectory, for example /usr/local/ecos/include/pkgconf, so
that the configuration data is visible to all the packages and to application code that may wish to examine some of the
configuration options.

2. Each package in the configuration is examined for exported header files. The exact order in which the packages are processed
is not defined, but should not matter.

a. If the package has an include_files property then this lists all the exported header files:

cdl_package <some_package> {
 …
 include_files header1.h header2.h
}

If no arguments are given then the package does not export any header files.

cdl_package <some_package> {
 …
 include_files
}

The listed files may be in an include subdirectory within the package's hierarchy, or they may be relative to the
package's toplevel directory. The include_files property is intended mainly for very simple packages. It can also be useful
when converting existing code to an eCos package, to avoid rearranging the sources.

b. If there is no include_files property then the component framework will look for an include subdirectory in the
package, as per the layout conventions. All files, including those in subdirectories, will be treated as exported header
files. For example, the math library package contains files include/math.h and include/sys/ieeefp.h, both
of which will be exported to the install tree.

c. As a last resort, if there is neither an include_files property nor an include subdirectory, the component framework
will search the package's toplevel directory and all of its subdirectories for files with one of the following suffixes: .h,
.hxx, .inl or .inc. All such files will be interpreted as exported header files.

This last resort rule could cause confusion for packages which have no exported header files but which do contain one or
more private header files. For example a typical device driver simply implements an existing interface rather than define
a new one, so it does not need to export a header file. However it may still have one or more private header files. Such
packages should use an include_files property with no arguments.

3. If the package has one or more exported header files, the next step is to determine where the files should end up. By default
all exported header files will just end up relative to the install tree's include subdirectory. For example the math library's
math.h header would end up as /usr/local/ecos/include/math.h, and the sys/ieeefp.h header would
end up as /usr/local/ecos/include/sys/ieeefp.h. This behaviour is correct for packages like the C library
where the interface is defined by appropriate standards. For other packages this behaviour can lead to file name clashes,
and the include_dir property should be used to avoid this:

cdl_package CYGPKG_KERNEL {
 include_dir cyg/kernel
}

This means that the kernel's exported header file include/kapi.h should be copied to /usr/local/ecos/
include/cyg/kernel/kapi.h, where it is very unlikely to clash with a header file from some other package.

4. For typical application developers there will be little or no need for the installed header files to change after the first build.
Changes will be necessary only if packages are added to or removed from the configuration. For component writers, the build
system should detect changes to the master copy of the header file source code and update the installed copies automatically

54

The Build Process

during the next build. The build system is expected to perform a header file dependency analysis, so any source files affected
should get rebuilt as well.

5. Some build systems may provide additional support for application developers who want to make minor changes to a
package, especially for debugging purposes. A header file could be copied from the component repository (which for
application developers is assumed to be a read-only resource) into the build tree and edited there. The build system would
detect a more recent version of such a header file in the build tree and install it. Care would have to be taken to recover
properly if the modified copy in the build tree is subsequently removed, in order to revert to the original behaviour.

6. When updating the install tree's include subdirectory, the build tree may also perform a clean-up operation. Specifically,
it may check for any files which do not correspond to known exported header files and delete them.

Note

At present there is no defined support in the build system for defining custom build steps that generate exported
header files. Any attempt to use the existing custom build step support may fall foul of unexpected header files
being deleted automatically by the build system. This limitation will be addressed in a future release of the
component framework, and may require changing the priority for exporting header files so that a custom build
step can happen first.

Compiling
Once there are up to date copies of all the exported header files in the build tree, the main build can proceed. Most of this
involves compiling source files listed in compile properties in the CDL scripts for the various packages, for example:

cdl_package CYGPKG_ERROR {
 display "Common error code support"
 compile strerror.cxx
 …
}

compile properties may appear in the body of a cdl_package, cdl_component, cdl_option or cdl_interface. If
the option or other CDL entity is active and enabled, the property takes effect. If the option is inactive or disabled the property
is ignored. It is possible for a compile property to list multiple source files, and it is also possible for a given CDL entity to
contain multiple compile properties. The following three examples are equivalent:

cdl_option <some_option> {
 …
 compile file1.c file2.c file3.c
}
cdl_option <some_option> {
 …
 compile file1.c
 compile file2.c
 compile file3.c
}
cdl_option <some_option> {
 …
 compile file1.c file2.c
 compile file3.c
}

Packages that follow the directory layout conventions should have a subdirectory src, and the component framework will
first look for the specified files there. Failing that it will look for the specified files relative to the package's root directory. For
example if a package contains a source file strerror.cxx then the following two lines are equivalent:

compile strerror.cxx
compile src/strerror.cxx

In the first case the component framework will find the file immediately in the packages src subdirectory. In the second
case the framework will first look for a file src/src/strerror.cxx, and then for str/strerror.cxx relative to the
package's root directory. The result is the same.

The file names may be relative paths, allowing the source code to be split over multiple directories. For example if a package
contains a file src/sync/mutex.cxx then the corresponding CDL entry would be:

55

The Build Process

compile sync/mutex.cxx

All the source files relevant to the current configuration will be identified when the build tree is generated or updated, and
added to the appropriate makefile (or its equivalent for other build systems). The actual build will involve a rule of the form:

<object file> : <source file>
 $(CC) -c $(INCLUDE_PATH) $(CFLAGS) -o $@ $<

The component framework has built-in knowledge for processing source files written in C, C++ or assembler. These should
have a .c, .cxx and .S suffix respectively. The current implementation has no simple mechanism for extending this with
support for other languages or for alternative suffixes, but this should be addressed in a future release.

The compiler command that will be used is something like arm-elf-gcc. This consists of a command prefix, in this case
arm-elf, and a specific command such as gcc. The command prefix will depend on the target architecture and is controlled
by a configuration option in the appropriate HAL package. It will have a sensible default value for the current architecture,
but users can modify this option when necessary. The command prefix cannot be changed on a per-package basis, since it is
usually essential that all packages are built with a consistent set of tools.

The $(INCLUDE_PATH) header file search path consists of at least the following:

1. The include directory in the install tree. This allows source files to access the various header files exported by all the
packages in the configuration, and also the configuration header files.

2. The current package's root directory. This ensures that all files in the package are accessible at build time.

3. The current package's src subdirectory, if it is present. Generally all files to be compiled are located in or below this
directory. Typically this is used to access private header files containing implementation details only.

The compiler flags $(CFLAGS) are determined in two steps. First the appropriate HAL package will provide a configuration
option defining the global flags. Typically this includes flags that are needed for the target processor, for example -
mcpu=arm9, various flags related to warnings, debugging and optimization, and flags such as -finit-priority which
are needed by eCos itself. Users can modify the global flags option as required. In addition it is possible for existing flags
to be removed from and new flags to be added to the current set on a per-package basis, again by means of user-modifiable
configuration options. More details are given below.

Component writers can assume that the build system will perform full header file dependency analysis, including dependencies
on configuration headers, but the exact means by which this happens is implementation-defined. Typical application developers
are unlikely to modify exported or private header files, but configuration headers are likely to change as the configuration
is changed to better meet the needs of the application. Full header file dependency analysis also makes things easier for the
component writers themselves.

The current directory used during a compilation is an implementation detail of the build system. However it can be assumed
that each package will have its own directory somewhere in the build tree, to prevent file name clashes, that this will be the
current directory, and that intermediate object files will end up here.

Generating the Libraries
Once all the compile and make_object properties have been processed and the required object files have been built or rebuilt,
these can be collected together in one or more libraries. The archiver will be the ar command corresponding to the current
architecture, for example powerpc-eabi-ar. By default al of the object files will end up in a single library libtarget.a. This
can be changed on a per-package basis using the library property in the body of the corresponding cdl_package command,
for example:

cdl_package <SOME_PACKAGE> {
 …
 library libSomePackage.a
}

However using different libraries for each package should be avoided. It makes things more difficult for application developers
since they now have to link the application code with more libraries, and possibly even change this set of libraries when
packages are added to or removed from the configuration. The use of a single library libtarget.a avoids any complications.

It is also possible to change the target library for individual files, using a -library option with the correspondingcompile
or make_object property. For example:

56

The Build Process

compile -library=libSomePackage.a hello.c
make_object -library=libSomePackage.a {
 …
}

Again this should be avoided because it makes application development more difficult. There is one special library which can
be used freely, libextras.a, which is used to generate the extras.o file as described below.

The order in which object files end up in a library is not defined. Typically each library will be created directly in the install
tree, since there is little point in generating a file in the build tree and then immediately copying it to the install tree.

The extras.o file
Package sources files normally get compiled and then added to a library, by default libtarget.a, which is then linked
with the application code. Because of the usual rules for linking with libraries, augmented by the use of link-time garbage
collection, this means that code will only end up in the final executable if there is a direct or indirect reference to it in the
application. Usually this is the desired behaviour: if the application does not make any use of say kernel message boxes, directly
or indirectly, then that code should not end up in the final executable taking up valuable memory space.

In a few cases it is desirable for package code to end up in the final executable even if there are no direct or indirect references.
For example, device driver functions are often not called directly. Instead the application will access the device via the string "/
dev/xyzzy" and call the device functions indirectly. This will be impossible if the functions have been removed at link-time.

Another example involves static C++ objects. It is possible to have a static C++ object, preferably with a suitable constructor
priority, where all of the interesting work happens as a side effect of running the constructor. For example a package might
include a monitoring thread or a garbage collection thread created from inside such a constructor. Without a reference by the
application to the static object the latter will never get linked in, and the package will not function as expected.

A third example would be copyright messages. A package vendor may want to insist that all products shipped using that
package include a particular message in memory, even though many users of that package will object to such a restriction.

To meet requirements such as these the build system provides support for a file extras.o, which always gets linked with
the application code via the linker script. Because it is an object file rather than a library everything in the file will be linked
in. The extras.o file is generated at the end of a build from a library libextras.a, so packages can put functions and
variables in suitable source files and add them to that library explicitly:

compile -library=libextras.a xyzzy.c
compile xyzzy_support.c

In this example xyzzy.o will end up in libextras.a, and hence in extras.o and in the final executable.
xyzzy_support.o will end up in libtarget.a as usual, and is subject to linker garbage collection.

Compilers and Flags

Caution

Some of the details of compiler selection and compiler flags described below are subject to change in future
revisions of the component framework, although every reasonable attempt will be made to avoid breaking
backwards compatibility.

The build system needs to know what compiler to use, what compiler flags should be used for different stages of the build and
so on. Much of this information will vary from target to target, although users should be able to override this when appropriate.
There may also be a need for some packages to modify the compiler flags. All platform HAL packages should define a number
of options with well-known names, along the following lines (any existing platform HAL package can be consulted for a
complete example):

cdl_component CYGBLD_GLOBAL_OPTIONS {
 flavor none
 parent CYGPKG_NONE
 …
 cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {
 flavor data

57

The Build Process

 default_value { "arm-elf" }
 …
 }
 cdl_option CYGBLD_GLOBAL_CFLAGS {
 flavor data
 default_value "-Wall -g -O2 …"
 …
 }
 cdl_option CYGBLD_GLOBAL_LDFLAGS {
 flavor data
 default_value "-g -nostdlib -Wl,--gc-sections …"
 …
 }
}

The CYGBLD_GLOBAL_OPTIONS component serves to collect together all global build-related options. It has the flavor none
since disabling all of these options would make it impossible to build anything and hence is not useful. It is parented immediately
below the root of the configuration hierarchy, thus making sure that it is readily accessible in the graphical configuration tool
and, for command line users, in the ecos.ecc save file.

Note

Currently the parent property lists a parent of CYGPKG_NONE, rather than an empty string. This could be
unfortunate if there was ever a package with that name. The issue will be addressed in a future release of the
component framework.

The option CYGBLD_GLOBAL_COMMAND_PREFIX defines which tools should be used for the current target. Typically this is
determined by the processor on the target hardware. In some cases a given target board may be able to support several different
processors, in which case the default_value expression could select a different toolchain depending on some other option that
is used to control which particular processor. CYGBLD_GLOBAL_COMMAND_PREFIX is modifiable rather than calculated,
so users can override this when necessary.

Given a command prefix such as arm-elf, all C source files will be compiled with arm-elf-gcc, all C++ sources will
be built using arm-elf-g++, and arm-elf-ar will be used to generate the library. This is in accordance with the usual
naming conventions for GNU cross-compilers and similar tools. For the purposes of custom build steps, tokens such as $(CC)
will be set to arm-elf-gcc.

The next option, CYGBLD_GLOBAL_CFLAGS, is used to provide the initial value of $(CFLAGS). Some compiler flags such
as -Wall and -g are likely to be used on all targets. Other flags such as -mcpu=arm7tdmi will be target-specific. Again
this is a modifiable option, so the user can switch from say -O2 to -Os if desired. The option CYGBLD_GLOBAL_LDFLAGS
serves the same purpose for $(LDFLAGS) and linking. It is used primarily when building test cases or possibly for some
custom build steps, since building eCos itself generally involves building one or more libraries rather than executables.

Some packages may wish to add certain flags to the global set, or possibly remove some flags. This can be achieved by having
appropriately named options in the package, for example:

cdl_component CYGPKG_KERNEL_OPTIONS {
 display "Kernel build options"
 flavor none
 …
 cdl_option CYGPKG_KERNEL_CFLAGS_ADD {
 display "Additional compiler flags"
 flavor data
 default_value { "" }
 …
 }
 cdl_option CYGPKG_KERNEL_CFLAGS_REMOVE {
 display "Suppressed compiler flags"
 flavor data
 default_value { "" }
 …
 }
 cdl_option CYGPKG_KERNEL_LDFLAGS_ADD {
 display "Additional linker flags"
 flavor data
 default_value { "" }

58

The Build Process

 …
 }
 cdl_option CYGPKG_KERNEL_LDFLAGS_REMOVE {
 display "Suppressed linker flags"
 flavor data
 default_value { "" }
 …
 }
}

In this example the kernel does not modify the global compiler flags by default, but it is possible for the users to modify the
options if desired. The value of $(CFLAGS) that is used for the compilations and custom build steps in a given package is
determined as follows:

1. Start with the global settings from CYGBLD_GLOBAL_CFLAGS, for example -g -O2.

2. Remove any flags specified in the per-package CFLAGS_REMOVE option, if any. For example if -O2 should be removed
for this package then $(CFLAGS) would now have a value of just -g.

3. Then concatenate the flags specified by the per-package CFLAGS_ADD option, if any. For example if -Os should be added
for the current package then the final value of $(CFLAGS) will be -g -Os.

$(LDFLAGS) is determined in much the same way.

Note

The way compiler flags are handled at present has numerous limitations that need to be addressed in a future
release, although it should suffice for nearly all cases. For the time being custom build steps and in particular the
make_object property can be used to work around the limitations.

Amongst the issues, there is a specific problem with package encapsulation. For example the math library imposes
some stringent requirements on the compiler in order to guarantee exact IEEE behavior, and may need special
flags on a per-architecture basis. One way of handling this is to have CYGPKG_LIBM_CFLAGS_ADD and
CYGPKG_LIBM_CFLAGS_REMOVE default_value expressions which depend on the target architecture, but such
expressions may have to updated for each new architecture. An alternative approach would allow the architectural
HAL package to modify the default_value expressions for the math library, but this breaks encapsulation. A third
approach would allow some architectural HAL packages to define one or more special options with well-known
names, and the math library could check if these options were defined and adjust the default values appropriately.
Other packages with floating point requirements could do the same. This approach also has scalability issues,
in particular how many such categories of options would be needed? It is not yet clear how best to resolve such
issues.

Note

When generating a build tree it would be desirable for the component framework to output details of the tools
and compiler flags in a format that can be re-used for application builds, for example a makefile fragment. This
would make it easier for application developers to use the same set of flags as were used for building eCos itself,
thus avoiding some potential problems with incompatible compiler flags.

Custom Build Steps

Caution

• Some of the details of custom build steps as described below are subject to change in future revisions of
the component framework, although every reasonable attempt will be made to avoid breaking backwards
compatibility.

• The first line in the make and make_object blocks introduced below defines the make target and its
dependencies with the remaining lines specifying the commands. These commands will always be tab-indented
in the resulting makefile and as a result all GNUmake commands, such as ifeq(...), will be illegal as these
cannot be indented. It is possible to work around this CDL deficiency in some instances using make's shell

59

The Build Process

syntax support. For an example, see the eCos custom build step used to create the mk_romfs command within
the CYGPKG_FS_ROM package located in $ECOS_REPOSITORY/packages/fs/rom/<version>/
cdl/romfs.cdl.

For most packages simply listing one or more source files in a compile property is sufficient. These files will get built using
the appropriate compiler and compiler flags and added to a library, which then gets linked with application code. A package
that can be built in this way is likely to be more portable to different targets and build environments, since it avoids build-
time dependencies. However some packages have special needs, and the component framework supports custom build steps
to allow for these needs. There are two properties related to this, make and make_object, and both take the following form:

make {
 <target_filepath> : <dependency_filepath> …
 <command>
 ...
}

Although this may look like makefile syntax, and although some build environments will indeed involve generating makefiles
and running make, this is not guaranteed. It is possible for the component framework to be integrated with some other build
system, and custom build steps should be written with that possibility in mind. Each custom build step involves a target, some
number of dependency files, and some number of commands. If the target is not up to date with respect to one or more of the
dependencies then the commands need to be executed.

a. Only one target can be specified. For a make_object property this target must be an object file. For a make property it can
be any file. In both cases it must refer to a physical file, the use of phony targets is not supported. The target should not be
an absolute path name. If the generated file needs to end up in the install tree then this can be achieved using a <PREFIX>
token, for example:

make {
 <PREFIX>/lib/mytarget : …
 ...
}

When the build tree is generated and the custom build step is added to the makefile (or whatever build system is used)
<PREFIX> will be replaced with the absolute path to the install tree.

b. All the dependencies must also refer to physical files, not to phony targets. These files may be in the source tree. The
<PACKAGE> token can be used to indicate this: when the build tree is generated this token will be replaced with the absolute
path to the package's root directory in the component repository, for example:

make_object {
 xyzzy.o : <PACKAGE>/src/xyzzy.c
 …

If the component repository was installed in /usr/local/ecos and this custom build step existed in version 1_5 of the
kernel, <PACKAGE> would be replaced with /usr/local/ecos/packages/kernel/v1_5.

Alternatively the dependencies may refer to files that are generated during the build. These may be object files resulting from
compile properties or other make_object properties, or they may be other files resulting from a make property, for example:

compile plugh.c
make_object {
 xyzzy.o : plugh.o
 …
}

c. No other token or makefile variables may be used in the target or dependency file names. Also conditionals such as ifneq
and similar makefile functionality must not be used.

d. Similarly the list of commands must not use any makefile conditionals or similar functionality. A number of tokens can be
used to provide access to target-specific or environmental data. Note that these tokens look like makefile variables, unlike
the <PREFIX> and <PACKAGE> tokens mentioned earlier:

Token Purpose Example value

$(AR) the GNU archiver mips-tx39-elf-ar

60

The Build Process

Token Purpose Example value

$(CC) the GNU compiler sh-elf-gcc

$(CFLAGS) compiler flags -O2 -Wall

$(COMMAND_PREFIX) the triplet prefix mn10300-elf-

$(INCLUDE_PATH) header file search path -I. -Isrc/misc

$(LDFLAGS) linker flags -nostdlib -Wl,-static

$(OBJCOPY) the objcopy utility arm-elf-objcopy

$(PREFIX) location of the install tree /home/fred/ecos-install

$(REPOSITORY) location of the component repository /home/fred/ecos/packages

In addition commands in a custom build step may refer to the target and the dependencies using $@, $<, $^ and $*, all of
which behave as per GNU make syntax. The commands will execute in a suitable directory in the build tree.

e. The current directory used during a custom build step is an implementation detail of the build system. However it can be
assumed that each package will have its own directory somewhere in the build tree, to prevent file name clashes, and that
this will be the current directory. In addition any object files generated as a result of compile properties will be located here
as well, which is useful for custom build steps that depend on a .o file previously generated.

Any temporary files created by a custom build step should be generated in the build tree (in or under the current directory).
Such files should be given a .tmp file extension to ensure that they are deleted during a make clean or equivalent
operation.

If a package contains multiple custom build steps with the same priority, it is possible that these build steps will be run
concurrently. Therefore these custom build steps must not accidentally use the same file names for intermediate files.

f. Care has to be taken to make sure that the commands in a custom build step will run on all host platforms, including Windows
NT as well as Linux and other Unix systems. For example, all file paths should use forward slashes as the directory separator.
It can be assumed that Windows users will have a full set of CygWin tools installed and available on the path. The GNU
coding standards provide some useful guidelines for writing portable build rules.

g. A custom build step must not make any assumptions concerning the version of another package. This enforces package
encapsulation, preventing one package from accessing the internals of another.

h. No assumptions should be made about the target platform, unless the package is inherently specific to that platform. Even
then it is better to use the various tokens whenever possible, rather than hard-coding in details such as the compiler. For
example, given a custom build step such as:

arm-elf-gcc -c -mcpu=arm7di -o $@ $<

Even if this build step will only be invoked on ARM targets, it could cause problems. For example the toolchain may have
been installed using a prefix other than arm-elf. Also, if the user changes the compiler flags then this would not be
reflected in the build step. The correct way to write this rule would be:

$(CC) -c $(CFLAGS) -o $@ $<

Some commands such as the compiler, the archiver, and objcopy are required sufficiently often to warrant their
own tokens, for example $(CC) and $(OBJCOPY). Other target-specific commands are needed only rarely and the
$(COMMAND_PREFIX) token can be used to construct the appropriate command name, for example:

$(COMMAND_PREFIX)size $< > $@

i. Custom build steps should not be used to build host-side executables, even if those executables are needed to build parts
of the target side code. Support for building host-side executables will be added in a future version of the component
framework, although it will not necessarily involve these custom build steps.

By default custom build steps defined in a make_object property have a priority of 100, which means that they will be executed
in the same phase as compilations resulting from a compile property. It is possible to change the priority using a property
option, for example:

61

http://www.gnu.org/prep/standards.html
http://www.gnu.org/prep/standards.html

The Build Process

make_object -priority 50 {
 …
}

Specifying a priority smaller than a 100 means that the custom build step happens before the normal compilations. Priorities
between 100 and 200 happen after normal compilations but before the libraries are archived together. make_object properties
should not specify a priority of 200 or later.

Custom build steps defined in a make property have a default priority of 300, and so they will happen after the libraries have
been built. Again this can be changed using a -priority property option.

Startup Code
Linking an application requires the application code, a linker script, the eCos library or libraries, the extras.o file, and some
startup code. Depending on the target hardware and how the application gets booted, this startup code may do little more than
branching to main(), or it may have to perform a considerable amount of hardware initialization. The startup code generally
lives in a file vectors.o which is created by a custom build step in a HAL package. As far as application developers are
concered the existence of this file is largely transparent, since the linker script ensures that the file is part of the final executable.

This startup code is not generally of interest to component writers, only to HAL developers who are referred to one of the
existing HAL packages for specific details. Other packages are not expected to modify the startup in any way. If a package
needs some work performed early on during system initialization, before the application's main entry point gets invoked, this
can be achieved using a static object with a suitable constructor priority.

Note

It is possible that the extras.o support, in conjunction with appropriate linker script directives, could be used
to eliminate the need for a special startup file. The details are not yet clear.

The Linker Script

Caution

This section is not finished, and the details are subject to change in a future release. Arguably linker script issues
should be documented in the HAL documentation rather than in this guide.

Generating the linker script is the responsibility of the various HAL packages that are applicable to a given target. Developers
of components other than HAL packages need not be concerned about what is involved. Developers of new HAL packages
should use an existing HAL as a template.

Note

It may be desirable for some packages to have some control over the linker script, for example to add extra
alignment details for a particular section. This can be risky because it can result in subtle portability problems,
and the current component framework has no support for any such operations. The issue may be addressed in
a future release.

Building Test Cases
Caution

The support in the current implementation of the component framework for building and running test cases is
limited, and should be enhanced considerably in a future version. Compatibility with the existing mechanisms
described below will be maintained if possible, but this cannot be guaranteed.

Whenever possible packages should be shipped with one or more test cases. This allows users to check that all packages
function correctly in their particular configuration and on their target, which may be custom hardware unavailable to the

62

The Build Process

package developer. The component framework needs to provide a way of building such test cases. For example, if a makefile
system is used then there could be a make tests target to build the test cases, or possibly a make check target to build
and run the test cases and process all the results. Unfortunately there are various complications.

Not every test case will be applicable to every configuration. For example if the user has disabled the C library's
CYGPKG_LIBC_STDIO component then there is no point in building or running any of the test cases for that component.
This implies that test cases need to be associated with configuration options somehow. It is possible for the test case to use
one or more #ifdef statements to check whether or not it is applicable in the current configuration, and compile to a null
program when not applicable. This is inefficient because the test case will still get built and possibly run, even though it will
not provide any useful information.

Many packages involve direct interaction with hardware, for example a serial line or an ethernet interface. In such cases it is
only worthwhile building and running the test if there is suitable software running at the other end of the serial line or listening
on the same ethernet segment, and that software would typically have to run on the host. Of course the serial line in question
may be hooked up to a different piece of hardware which the application needs to talk to, so disconnecting it and then hooking
it up to the host for running some tests may be undesirable. The decision as to whether or not to build the test depends not just
on the eCos configuration but also on the hardware setup and the availability of suitable host software.

There are different kinds of tests, and it is not always desirable to run all of them. For example a package may contain a number
of stress tests intended to run for long periods of time, possibly days or longer. Such tests should certainly be distinguished
somehow from ordinary test cases so that users will not run them accidentally and wonder how long they should wait for a
pass message before giving up. Stress tests may also have dependencies on the hardware configuration and on host software,
for example a network stress test may require lots of ethernet packets.

In the current implementation of the component framework these issues are not yet addressed. Instead there is only very limited
support for building test cases. Any package can define a calculated configuration option of the form CYGPKG_<package-
name>_TESTS, whose value is a list of test cases. The calculated property can involve an expression so it is possible to adapt
to a small number of configuration options, but this quickly becomes unwieldy. A typical example would be:

cdl_option CYGPKG_UITRON_TESTS {
 display "uITRON tests"
 flavor data
 no_define
 calculated { "tests/test1 tests/test2 tests/test3 \
 tests/test4 tests/test5 tests/test6 tests/test7 \
 tests/test8 tests/test9 tests/testcxx tests/testcx2 \
 tests/testcx3 tests/testcx4 tests/testcx5 \
 tests/testcx6 tests/testcx7 tests/testcx8 \
 tests/testcx9 tests/testintr" }
 description "
This option specifies the set of tests for the uITRON compatibility layer."
}

This implies that there is a file tests/test1.c or tests/test1.cxx in the package's directory. The commands that
will be used to build the test case will take the form:

$(CC) -c $(INCLUDE_PATH) $(CFLAGS) -o <build path>/test1.o \
 <source path>/tests/test1.c
$(CC) $(LDFLAGS) -o <install path>/tests/test1 <build_path>/test1.o

The variables $(CC) and so on are determined in the same way as for custom build steps. The various paths and the current
directory will depend on the exact build system being used, and are subject to change. As usual the sources in the component
repository are treated as a read-only resources, intermediate files live in the build tree, and the desired executables should end
up in the install tree.

Each test source file must be self-contained. It is not possible at present to build a little per-package library that can be used
by the test cases, or to link together several object files to produce a single test executable. In some cases it may be possible to
#include source code from a shared file in order to avoid unnecessary code replication. There is no support for manipulating
compiler or linker flags for individual test cases: the flags that will be used for all files are $(CFLAGS) and $(LDFLAGS),
as per custom build steps. Note that it is possible for a package to define options of the form CYGPKG_<PACKAGE-
NAME>_LDFLAGS_ADD and CYGPKG_<PACKAGE-NAME>_LDFLAGS_REMOVE. These will affect test cases, but in the
absence of custom build steps they will have no other effect on the build.

63

Chapter 5. CDL Language Specification
This chapter contains reference information for the main CDL commands cdl_option, cdl_component, cdl_package
and cdl_interface, followed by the various properties such as active_if and compile in alphabetical order.

64

CDL Language Specification

Name
Command cdl_option — Define a single configuration option

Synopsis
cdl_option <name> {
 …
}

Description
The option is the basic unit of configurability. Generally each option corresponds to a single user choice. Typically there is a
certain amount of information associated with an option to assist the user in manipulating that option, for example a textual
description. There will also be some limits on the possible values that the user can choose, so an option may be a simple yes-
or-no choice or it may be something more complicated such as an array size or a device name. Options may have associated
constraints, so if that option is enabled then certain conditions have to satisfied elsewhere in the configuration. Options usually
have direct consequences such as preprocessor #define symbols in a configuration header file.

cdl_option is implemented as a Tcl command that takes two arguments, a name and a body. The name must be a valid
C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores, starting with a non-digit character;
identifiers beginning with an underscore should normally be avoided because they may clash with system packages or with
identifiers reserved for use by the compiler. Within a single configuration, names must be unique. If a configuration contained
two packages which defined the same entity CYGIMP_SOME_OPTION, any references to that entity in a requires property
or any other expression would be ambiguous. It is possible for a given name to be used by two different packages if those
packages should never be loaded into a single configuration. For example, architectural HAL packages are allowed to re-use
names because a single configuration cannot target two different architectures. For a recommended naming convention see the
section called “Package Contents and Layout”.

The second argument to cdl_option is a body of properties, typically surrounded by braces so that the Tcl interpreter treats
it as a single argument. This body will be processed by a recursive invocation of the Tcl interpreter, extended with additional
commands for the various properties that are allowed inside a cdl_option. The valid properties are:

active_if Allow additional control over the active state of this option.

calculated The option's value is not directly user-modifiable, it is calculated using a suitable CDL expression.

compile List the source files that should be built if this option is active and enabled.

default_value Provide a default value for this option using a CDL expression.

define Specify additional #define symbols that should go into the owning package's configuration header
file.

define_format Control how the option's value will appear in the configuration header file.

define_proc Use a fragment of Tcl code to output additional data to configuration header files.

description Provide a textual description for this option.

display Provide a short string describing this option.

doc The location of on-line documentation for this option.

flavor Specify the nature of this option.

if_define Output a common preprocessor construct to a configuration header file.

implements Enabling this option provides one instance of a more general interface.

legal_values Impose constraints on the possible values for this option.

65

CDL Language Specification

make An additional custom build step associated with this option, resulting in a target that should not go
directly into a library.

make_object An additional custom build step associated with this option, resulting in an object file that should
go into a library.

no_define Suppress the normal generation of a preprocessor #define symbol in a configuration header file.

parent Control the location of this option in the configuration hierarchy.

requires List constraints that the configuration should satisfy if this option is active and enabled.

Example
cdl_option CYGDBG_INFRA_DEBUG_PRECONDITIONS {
 display "Preconditions"
 default_value 1
 description "
 This option allows individual control of preconditions.
 A precondition is one type of assert, which it is
 useful to control separately from more general asserts.
 The function is CYG_PRECONDITION(condition,msg)."
}

See Also
Command cdl_component, command cdl_package, command cdl_interface.

66

CDL Language Specification

Name
Command cdl_component — Define a component, a collection of configuration options

Synopsis
cdl_component <name> {
 …
}

Description
A component is a configuration option that can contain additional options and sub-components. The body of a
cdl_component can contain the same properties as that of a cdl_option. There is an additional property, script which
allows configuration data to be split into multiple files. It is also possible for a component body to include cdl_component,
cdl_option and cdl_interface entities that should go below this component in the configuration hierarchy.

cdl_component is implemented as a Tcl command that takes two arguments, a name and a body. The name must be a valid
C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores, starting with a non-digit character;
identifiers beginning with an underscore should normally be avoided because they may clash with system packages or with
identifiers reserved for use by the compiler. Within a single configuration, names must be unique. If a configuration contained
two packages which defined the same entity CYGIMP_SOME_OPTION, any references to that entity in a requires property
or any other expression would be ambiguous. It is possible for a given name to be used by two different packages if those
packages should never be loaded into a single configuration. For example, architectural HAL packages are allowed to re-use
certain names because a single configuration cannot target two different architectures. For a recommended naming convention
see the section called “Package Contents and Layout”.

The second argument to cdl_component is a body of properties and other commands, typically surrounded by braces
so that the Tcl interpreter treats it as a single argument. This body will be processed by a recursive invocation of the Tcl
interpreter, extended with additional commands for the various properties that are allowed inside a cdl_component. The
valid commands are:

active_if Allow additional control over the active state of this component.

calculated The component's value is not directly user-modifiable, it is calculated using a suitable CDL
expression.

cdl_component Define a sub-component.

cdl_interface Define an interface which should appear immediately below this component in the configuration
hierarchy.

cdl_option Define a configuration option which should appear immediately below this component in the
configuration hierarchy.

compile List the source files that should be built if this component is active and enabled.

default_value Provide a default value for this component using a CDL expression.

define Specify additional #define symbols that should go into the owning package's configuration header
file.

define_format Control how the component's value will appear in the configuration header file.

define_proc Use a fragment of Tcl code to output additional data to configuration header files.

description Provide a textual description for this component.

display Provide a short string describing this component.

doc The location of on-line documentation for this component.

67

CDL Language Specification

flavor Specify the nature of this component.

if_define Output a common preprocessor construct to a configuration header file.

implements Enabling this component provides one instance of a more general interface.

legal_values Impose constraints on the possible values for this component.

make An additional custom build step associated with this component, resulting in a target that should not
go directly into a library.

make_object An additional custom build step associated with this component, resulting in an object file that should
go into a library.

no_define Suppress the normal generation of a preprocessor #define symbol in a configuration header file.

parent Control the location of this component in the configuration hierarchy.

requires List constraints that the configuration should satisfy if this component is active and enabled.

script Include additional configuration information from another CDL script

Example
cdl_component CYGDBG_USE_ASSERTS {
 display "Use asserts"
 default_value 1
 description "
 If this component is enabled, assertions in the code are
 tested at run-time. Assert functions (CYG_ASSERT()) are
 defined in 'include/cyg/infra/cyg_ass.h' within the 'install'
 tree. If the component is disabled, these result in no
 additional object code and no checking of the asserted
 conditions."
 script assert.cdl
}

See Also
Command cdl_option, command cdl_package, command cdl_interface.

68

CDL Language Specification

Name
Command cdl_package — Define a package, a component that can be distributed

Synopsis
cdl_package <name> {
 …
}

Description
A package is a unit of distribution. It is also a configuration option in that users can choose whether or not a particular package
is loaded into the configuration, and which version of that package should be loaded. It is also a component in that it can contain
additional components and options in a hierarchy.

The top-level CDL script for a package should begin with a cdl_package command. This can contain most of the properties
that can be used in a cdl_option command, and a number of additional ones which apply to a package as a whole. It is also
possible to include cdl_component, cdl_interface and cdl_option commands in the body of a package. However
all configuration entities that occur at the top level of the script containing the cdl_package command are automatically
placed below that package in the configuration hierarchy, so putting them inside the body has no effect.

The following properties cannot be used in the body of a cdl_package command:

flavor Packages always have the flavor booldata.

default_value The value of a package is its version number. This is specified at the time the package is loaded
into the configuration, and cannot be calculated afterwards. Typically the most recent version of the
package will be loaded.

legal_values The legal values list for a given package is determined by which versions of that package are installed
in the component repository, and cannot be further constrained in the CDL scripts.

calculated The value of a package is always selected at the time that it is loaded into the configuration, and
cannot be re-calculated afterwards.

script This would be redundant since the CDL script containing the cdl_package command acts as that
package's script.

cdl_package is implemented as a Tcl command that takes two arguments, a name and a body. The name must be a valid
C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores, starting with a non-digit character;
identifiers beginning with an underscore should normally be avoided because they may clash with system packages or with
identifiers reserved for use by the compiler. Packages should always have unique names within a given component repository.
For a recommended naming convention see the section called “Package Contents and Layout”.

The second argument to cdl_package is a body of properties and other commands, typically surrounded by braces so that
the Tcl interpreter treats it as a single argument. This body will be processed by a recursive invocation of the Tcl interpreter,
extended with additional commands for the various properties that are allowed inside a cdl_package. The valid commands
are:

active_if Allow additional control over the active state of this package.

cdl_component Define a component which should appear immediately below this package in the configuration
hierarchy.

cdl_interface Define an interface which should appear immediately below this package in the configuration
hierarchy.

cdl_option Define an option which should appear immediately below this package in the configuration
hierarchy.

69

CDL Language Specification

compile List the source files that should be built for this package.

define Specify additional #define symbols that should go into the package's configuration header file.

define_format Control how the package's value will appear in the global configuration header file pkgconf/
system.h

define_header Specify the configuration header file that will be generated for this package.

define_proc Use a fragment of Tcl code to output additional data to configuration header files.

description Provide a textual description for this component.

display Provide a short string describing this component.

doc The location of on-line documentation for this component.

hardware This package is tied to specific hardware.

if_define Output a common preprocessor construct to a configuration header file.

implements Enabling this component provides one instance of a more general interface.

include_dir Specify the desired location of this package's exported header files in the install tree.

include_files List the header files that are exported by this package.

library Specify which library should contain the object files generated by building this package.

make An additional custom build step associated with this component, resulting in a target that should not
go directly into a library.

make_object An additional custom build step associated with this component, resulting in an object file that should
go into a library.

no_define Suppress the normal generation of the package's #define in the global configuration header file
pkgconf/system.h.

parent Control the location of this package in the configuration hierarchy.

requires List constraints that the configuration should satisfy if this package is active.

Example
cdl_package CYGPKG_INFRA {
 display "Infrastructure"
 include_dir cyg/infra
 description "
 Common types and useful macros.
 Tracing and assertion facilities.
 Package startup options."

 compile startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \
 dummyxxmain.cxx null.cxx simple.cxx fancy.cxx buffer.cxx \
 diag.cxx tcdiag.cxx memcpy.c memset.c delete.cxx
}

See Also
Command cdl_option, command cdl_component, command cdl_interface.

70

CDL Language Specification

Name
Command cdl_interface — Define an interface, functionality that can be provided by a number of different
implementations.

Synopsis
cdl_interface <name> {
 …
}

Description
An interface is a special type of calculated configuration option. It provides an abstraction mechanism that is often useful in
CDL expressions. As an example, suppose that some package relies on the presence of code that implements the standard
kernel scheduling interface. However the requirement is no more stringent than this, so the constraint can be satisfied by the
mlqueue scheduler, the bitmap scheduler, or any additional schedulers that may get implemented in future. A first attempt at
expressing the dependency might be:

requires CYGSEM_KERNEL_SCHED_MLQUEUE || CYGSEM_KERNEL_SCHED_BITMAP

This constraint is limited, it may need to be changed if a new scheduler were to be added to the system. Interfaces provide a
way of expressing more general relationships:

requires CYGINT_KERNEL_SCHEDULER

The interface CYGINT_KERNEL_SCHEDULER is implemented by both the mlqueue and bitmap schedulers, and may be
implemented by future schedulers as well. The value of an interface is the number of implementors that are active and enabled,
so in a typical configuration only one scheduler will be in use and the value of the interface will be 1. If all schedulers are
disabled then the interface will have a value 0 and the requires constraint will not be satisfied.

Some component writers may prefer to use the first requires constraint on the grounds that the code will only have been tested
with the mlqueue and bitmap schedulers and cannot be guaranteed to work with any new schedulers. Other component writers
may take a more optimistic view and assume that their code will work with any scheduler until proven otherwise.

Interfaces must be defined in CDL scripts, just like options, components and packages. This involves the command
cdl_interface which takes two arguments, a name and a body. The name must be a valid C preprocessor identifier: a
sequence of upper or lower case letters, digits or underscores, starting with a non-digit character; identifiers beginning with an
underscore should normally be avoided because they may clash with system packages or with identifiers reserved for use by
the compiler. Within a single configuration, names must be unique. If a configuration contained two packages which defined
the same entity CYGIMP_SOME_OPTION, any references to that entity in a requires property or any other expression would be
ambiguous. It is possible for a given name to be used by two different packages if those packages should never be loaded into
a single configuration. For example, architectural HAL packages are allowed to re-use names because a single configuration
cannot target two different architectures. For a recommended naming convention see the section called “Package Contents
and Layout”.

The second argument to cdl_interface is a body of properties, typically surrounded by braces so that the Tcl interpreter
treats it as a single argument. This body will be processed by a recursive invocation of the Tcl interpreter, extended with
additional commands for the various properties that are allowed inside a cdl_interface. The valid properties are a subset
of those for a cdl_option.

active_if Allow additional control over the active state of this interface.

compile List the source files that should be built if this interface is active.

define Specify additional #define symbols that should go into the owning package's configuration header
file.

define_format Control how the interface's value will appear in the configuration header file.

define_proc Use a fragment of Tcl code to output additional data to configuration header files.

71

CDL Language Specification

description Provide a textual description for this interface.

display Provide a short string describing this interface.

doc The location of on-line documentation for this interface.

flavor Interfaces have the data flavor by default, but they can also be given the bool or booldata
flavor when necessary. A bool interface is disabled if there are no active and enabled implementors,
otherwise it is enabled. A booldata interface is also disabled if there are no active and enabled
implementors, otherwise it is enabled and the data is a number corresponding to the number of these
implementors.

if_define Output a common preprocessor construct to a configuration header file.

implements If this interface is active it provides one instance of a more general interface.

legal_values Interfaces always have a small numerical value. The legal_values can be used to apply additional
constraints such as an upper limit.

make An additional custom build step associated with this option, resulting in a target that should not go
directly into a library.

make_object An additional custom build step associated with this option, resulting in an object file that should
go into a library.

no_define Suppress the normal generation of a preprocessor #define symbol in a configuration header file.

parent Control the location of this option in the configuration hierarchy.

requires List constraints that the configuration should satisfy if this option is active and enabled.

A number of properties are not applicable to interfaces:

calculated Interfaces are always calculated, based on the number of active and enabled entities that
implement the interface.

default_value Interface values are calculated so a default_value property would be meaningless.

Interfaces are not containers, so they cannot hold other entities such as options or components.

A commonly used constraint on interface values takes the form:

requires CYGINT_KERNEL_SCHEDULER == 1

This constraint specifies that there can be only one scheduler in the system. In some circumstances it is possible for the
configuration tools to detect this pattern and act accordingly, so for example enabling the bitmap scheduler would automatically
disable the mlqueue scheduler.

Example
cdl_interface CYGINT_KERNEL_SCHEDULER {
 display "Number of schedulers in this configuration"
 requires 1 == CYGINT_KERNEL_SCHEDULER
}

See Also
Property implements, command cdl_option. command cdl_component, command cdl_package.

72

CDL Language Specification

Name
Property active_if — Allow additional control over the active state of an option or other CDL entity.

Synopsis
cdl_option <name> {
 active_if <condition>
 …
}

Description
Configuration options or other entities may be either active or inactive. Typically this is controlled by the option's location in
the overall hierarchy. Consider the option CYGDBG_INFRA_DEBUG_PRECONDITIONS, which exists below the component
CYGDBG_USE_ASSERT. If the whole component is disabled then the options it contains are inactive: there is no point in
enabling preconditions unless there is generic assertion support; any requires constraints associated with preconditions are
irrelevant; any compile property or other build-related property is ignored.

In some cases the hierarchy does not provide sufficient control over whether or not a particular option should be active. For
example, the math library could have support for floating point exceptions which is only worthwhile if the hardware implements
appropriate functionality, as specified by the architectural HAL. The relevant math library configuration options should remain
below the CYGPKG_LIBM package in the overall hierarchy, but should be inactive unless there is appropriate hardware support.
In cases like this an active_if property is appropriate.

Another common use of active_if properties is to avoid excessive nesting in the configuration hierarchy. If some option B is
only relevant if option A is enabled, it is possible to turn A into a component that contains B. However adding another level
to the hierarchy for a component which will contain just one entry may be considered excessive. In such cases it is possible
for B to have an active_if dependency on A.

active_if takes a goal expression as argument. For details of goal expression syntax see the section called “Goal Expressions”.
In most cases the goal expression will be very simple, often involving just one other option, but more complicated expressions
can be used when appropriate. It is also possible to have multiple active_if conditions in a single option, in which case all of
the conditions have to be satisfied if the option is to be active.

The active_if and requires properties have certain similarities, but they serve a different purpose. Suppose there are two
options A and B, and option B relies on functionality provided by A. This could be expressed as either active_if A or
as requires A. The points to note are:

• If active_if A is used and A is disabled or inactive, then graphical tools will generally prevent any attempt at modifying
B. For example the text for B could be grayed out, and the associated checkbutton (if B is a boolean option) would be
disabled. If the user needs the functionality provided by option B then it is necessary to go to option A first and manipulate
it appropriately.

• If requires A is used and A is disabled or inactive, graphical tools will still allow B to be manipulated and enabled. This
would result in a new conflict which may get resolved automatically or which may need user intervention.

• If there are hardware dependencies then an active_if condition is usually the preferred approach. There is no point in allowing
the user to manipulate a configuration option if the corresponding functionality cannot possibly work on the currently-
selected hardware. Much the same argument applies to coarse-grained dependencies, for example if an option depends on
the presence of a TCP/IP stack then an active_if CYGPKG_NET condition is appropriate: it may be possible to satisfy
the condition, but it requires the fairly drastic step of loading another package; further more, if the user wanted a TCP/IP
stack in the configuration then it would probably have been loaded already.

• If option B exists to provide additional debugging information about the functionality provided by A then again an active_if
constraint is appropriate. There is no point in letting users enable extra debugging facilities for a feature that is not actually
present.

• The configuration system's inference engine will cope equally well with active_if and requires properties. Suppose there is
a conflict because some third option depends on B. If B is active_if A then the inference engine will attempt to make

73

CDL Language Specification

A active and enabled, and then to enable B if necessary. If B requires A then the inference engine will attempt to enable
B and resolve the resulting conflict by causing A to be both active and enabled. Although the inference occurs in a different
order, in most cases the effect will be the same.

Example
Do not provide extra semaphore debugging if there are no semaphores
cdl_option CYGDBG_KERNEL_INSTRUMENT_BINSEM {
 active_if CYGPKG_KERNEL_SYNCH
 …
}
Avoid another level in the configuration hierarchy
cdl_option CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INHERITANCE_SIMPLE_RELAY {
 active_if CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INHERITANCE_SIMPLE
 …
}
Functionality that is only relevant if another package is loaded
cdl_option CYGSEM_START_UITRON_COMPATIBILITY {
 active_if CYGPKG_UITRON
 …
}
Check that the hardware or HAL provide the appropriate functionality
cdl_option CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT {
 active_if CYGINT_HAL_DEBUG_GDB_STUBS_BREAK
 …
}

See Also
Property requires.

74

CDL Language Specification

Name
Property calculated — Used if the current option's value is not user-modifiable, but is calculated using a suitable CDL
expression.

Synopsis
cdl_option <name> {
 calculated <expression>
 …
}

Description
In some cases it is useful to have a configuration option whose value cannot be modified directly by the user. This can be
achieved using a calculated, which takes a CDL expression as argument (see the section called “Ordinary Expressions” for a
description of expression syntax). The configuration system evaluates the expression when the current package is loaded and
whenever there is a change to any other option referenced in the expression. The result depends on the option's flavor:

flavor none Options with this flavor have no value, so the calculated property is not applicable.

flavor bool If the expression evaluates to a non-zero result the option is enabled, otherwise it is disabled.

flavor booldata If the result of evaluating the expression is zero then the option is disabled, otherwise the option is
enabled and its value is the result.

flavor data The value of the option is the result of evaluating the expression.

There are a number of valid uses for calculated options, and there are also many cases where some other CDL facility would
be more appropriate. Valid uses of calculated options include the following:

• On some target hardware a particular feature may be user-configurable, while on other targets it is fixed. For example
some processors can operate in either big-endian or little-endian mode, while other processors do not provide any choice.
It is possible to have an option CYGARC_BIGENDIAN which is calculated in some architectural HAL packages but user-
modifiable in others.

• Calculated options can provide an alternative way for one package to affect the behavior of another one. Suppose a package
may provide two possible implementations, a preferred one involving self-modifying code and a slower alternative. If the
system involves a ROM bootstrap then the slower alternative must be used, but it would be inappropriate to modify the startup
option in every HAL to impose constraints on this package. Instead it is possible to have a calculated option whose value is
{ CYG_HAL_STARTUP == "ROM" }, and which has appropriate consequences. Arguably this is a spurious example, and
it should be a user choice whether or not to use self-modifying code with a default_value based on CYG_HAL_STARTUP,
but that is for the component writer to decide.

• Sometimes it should be possible to perform a particular test at compile-time, for example by using a C preprocessor #if
construct. However the preprocessor has only limited functionality, for example it cannot perform string comparisons. CDL
expressions are more powerful.

• Occasionally a particular sub-expression may occur multiple times in a CDL script. If the sub-expression is sufficiently
complex then it may be worthwhile to have a calculated option whose value is the sub-expression, and then reference that
calculated option in the appropriate places.

Alternatives to using calculated options include the following:

• CDL interfaces are a form of calculated option intended as an abstraction mechanism. An interface can be used to express
the concept of any scheduler, as opposed to a specific one such as the bitmap scheduler.

• If a calculated option would serve only to add additional information to a configuration header file, it may be possible to
achieve the same effect using a define_proc property or one of the other properties related to header file generation.

75

CDL Language Specification

Tip

If the first entry in a calculated expression is a negative number, for example calculated -1 then this can be
misinterpreted as an option instead of as part of the expression. Currently the calculated property does not take
any options, but this may change in future. Option processing halts at the sequence --, so the desired value can
be expressed safely using calculated -- -1

Warning

Some of the CDL scripts in current eCos releases make excessive use of calculated options. This is partly
because the recommended alternatives were not always available at the time the scripts were written. It is also
partly because there is still some missing functionality, for example define_proc properties cannot yet access
the configuration data so it may be necessary to use calculated properties to access the data and perform the
desired manipulation via a CDL expression. New scripts should use calculated options only in accordance with
the guidelines.

Note

For options with the booldata flavor the current CDL syntax does not allow the enabled flag and the value to be
calculated separately. Functionality to permit this may be added in a future release.

Note

It has been suggested that having options which are not user-modifiable is potentially confusing, and that a top-
level cdl_constant command should be added to the language instead of or in addition to the calculated
property. Such a change is under consideration. However because the value of a calculated option can depend
on other options, it is not necessarily constant.

Example
A constant on some target hardware, perhaps user-modifiable on other
targets.
cdl_option CYGNUM_HAL_RTC_PERIOD {
 display "Real-time clock period"
 flavor data
 calculated 12500
}

See Also
Properties default_value, flavor and legal_values,

76

CDL Language Specification

Name
Property compile — List the source files that should be built if this option is active and enabled.

Synopsis
cdl_option <name> {
 compile [-library=libxxx.a] <list of files>
 …
}

Description
The compile property allows component developers to specify source files which should be compiled and added to one of the
target libraries. Usually each source file will end up the library libtarget.a. It is possible for component writers to specify
an alternative library for an entire package using the library property. Alternatively the desired library can be specified on the
compile line itself. For example, to add a particular source file to the libextras.a library the following could be used:

cdl_package CYGPKG_IO_SERIAL {
 …
 compile -library=libextras.a common/tty.c
}

Details of the build process including such issues as compiler flags and the order in which things happen can be found in
Chapter 4, The Build Process.

compile properties can occur in any of cdl_option, cdl_component, cdl_package or cdl_interface. A compile
property has effect if and only if the entity that contains it is active and enabled. Typically the body of a cdl_package will
define any source files that need to be built irrespective of individual options, and each cdl_component, cdl_option,
and cdl_interface will define source files that are more specific. A single compile property can list any number of source
files, all destined for the same library. A cdl_option or other entity can contain multiplecompile properties, each of which
can specify a different library. It is possible for a given source file to be specified in compile properties for several different
options, in which case the source file will get built if any of these options are active and enabled.

If the package follows the directory layout conventions then the configuration tools will search for the specified source files
first in the src subdirectory of the package, then relative to the package directory itself.

Note

A shortcoming of the current specification of compile properties is that there is no easy way to specify source
files that should be built unless an option is enabled. It would sometimes be useful to be able to say: “if option A
is enabled then compile file x.c, otherwise compile file y.c. There are two simple ways of achieving this:

• Always compile y.c, typically by listing it in the body of the cdl_package, but use #ifndef A to produce
an empty object file if option A is not enabled. This has the big disadvantage that the file always gets compiled
and hence for some configurations builds will take longer than necessary.

• Use a calculated option whose value is !A, and have a compile y.c property in its body. This has the big
disadvantage of adding another calculated option to the configuration.

It is likely that this will be resolved in the future, possibly by using some sort of expression as the argument to
a compile property.

Note

Currently it is not possible to control the priority of a compile property, in other words the order in which a file
gets compiled relative to other build steps. This functionality might prove useful for complicated packages and
should be added.

Example
cdl_package CYGPKG_INFRA {

77

CDL Language Specification

 display "Infrastructure"
 include_dir cyg/infra
 description "
 Common types and useful macros.
 Tracing and assertion facilities.
 Package startup options."

 compile startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \
 dummyxxmain.cxx memcpy.c memset.c delete.cxx \
 diag.cxx tcdiag.cxx
}

See Also
Properties make, make_object and library.

78

CDL Language Specification

Name
Property default_value — Provide a default value for this option using a CDL expression.

Synopsis
cdl_option <name> {
 default_value <expression>
 …
}

Description
The default_value property allows the initial value of a configuration option to depend on other configuration options. The
arguments to the property should be a CDL expression, see the section called “Ordinary Expressions” for the syntactic details.
In many cases a simple constant value will suffice, for example:

cdl_component CYGPKG_KERNEL_EXCEPTIONS {
 …
 default_value 1
 cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE {
 …
 default_value 0
 }
}

However it is also possible for an option's default value to depend on other options. For example the common HAL package
provides some support functions that are needed by the eCos kernel, but are unlikely to be useful if the kernel is not being
used. This relationship can be expressed using:

cdl_option CYGFUN_HAL_COMMON_KERNEL_SUPPORT {
 ...
 default_value CYGPKG_KERNEL
}

If the kernel is loaded then this HAL option is automatically enabled, although the user can still disable it explicitly should this
prove necessary. If the kernel is not loaded then the option is disabled, although it can still be enabled by the user if desired.
default_value expressions can be more complicated than this if appropriate, and provide a very powerful facility for component
writers who want their code to “just do the right thing” in a wide variety of configurations.

The CDL configuration system evaluates the default_value expression when the current package is loaded and whenever there
is a change to any other option referenced in the expression. The result depends on the option's flavor:

flavor none Options with this flavor have no value, so the default_value property is not applicable.

flavor bool If the expression evaluates to a non-zero result the option is enabled by default, otherwise it is
disabled.

flavor booldata If the result of evaluating the expression is zero then the option is disabled, otherwise the option is
enabled and its value is the result.

flavor data The default value of the option is the result of evaluating the expression.

A cdl_option or other entity can have at most one default_value property, and it is illegal to have both a calculated and a
default_value property in one body. If an option does not have either a default_value or a calculated property and it does not
have the flavor none then the configuration tools will assume a default value expression of 0.

On occasion it is useful to have a configuration option A which has both a requires constraint on some other option B and
a default_value expression of B. If option B is not enabled then A will also be disabled by default and no conflict arises. If
B is enabled then A also becomes enabled and again no conflict arises. If a user attempts to enable B but not A then there
will be a conflict. Users should be able to deduce that the two options are closely interlinked and should not be manipulated
independently except in very unusual circumstances.

79

CDL Language Specification

Tip

If the first entry in a default_value expression is a negative number, for example default_value -1 then this
can be misinterpreted as an option instead of as part of the expression. Currently the default_value property does
not take any options, but this may change in future. Option processing halts at the sequence --, so the desired
value can be expressed safely using default_value -- -1

Note

In many cases it would be useful to calculate default values using some global preferences, for example:

cdl_option CYGIMP_LIBC_STRING_PREFER_SMALL_TO_FAST {
 …
 default_value CYGGLO_CODESIZE > CYGGLO_SPEED
}

Such global preference options do not yet exist, but are likely to be added in a future version.

Note

For options with the booldata flavor the current syntax does not allow the default values of the enabled flag and
the value to be controlled separately. Functionality to permit this may be added in a future release.

Example
cdl_option CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT {
 display "Include GDB multi-threading debug support"
 requires CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
 default_value CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
 description "
 This option enables some extra HAL code which is needed
 to support multi-threaded source level debugging."
}

See Also
Properties calculated, flavor and legal_values.

80

CDL Language Specification

Name
Property define — Specify additional #define symbols that should go into the owning package's configuration header file.

Synopsis
cdl_option <name> {
 define [-file=<filename>] [-format=<format>] <symbol>
 …
}

Description
Normally the configuration system generates a single #define for each option that is active and enabled, with the defined
symbol being the name of the option. These #define's go to the package's own configuration header file, for example
pkgconf/kernel.h for kernel configuration options. For the majority of options this is sufficient. Sometimes it is useful
to have more control over which #define's get generated.

The define property can be used to generate an additional #define if the option is both active and enabled, for example:

cdl_option CYGNUM_LIBC_STDIO_FOPEN_MAX {
 …
 define FOPEN_MAX
}

If this option is given the value 40 then the following #define's will be generated in the configuration header pkgconf/
libc.h:

#define CYGNUM_LIBC_STDIO_FOPEN_MAX 40
#define FOPEN_MAX 40

The default #define can be suppressed if desired using the no_define property. This is useful if the symbol should only be
defined in pkgconf/system.h and not in the package's own configuration header file. The value that will be used for this
#define is the same as for the default one, and depends on the option's flavor as follows:

flavor none Options with this flavor are always enabled and have no value, so the constant 1 will be used.

flavor bool If the option is disabled then no #define will be generated. Otherwise the constant 1 will be used.

flavor booldata If the option is disabled then no #define will be generated. Otherwise the option's current value
will be used.

flavor data The option's current value will be used.

For active options with the data flavor, and for active and enabled options with the booldata flavor, either one or two
#define's will be generated. These take the following forms:

#define <symbol> <value>
#define <symbol>_<value>

For the first #define it is possible to control the format used for the value using a -format=<format> option. For
example, the following can be used to output some configuration data as a C string:

cdl_option <name> {
 …
 define -format="\\\"%s\\\"" <symbol>
}

The implementation of this facility involves concatenating the Tcl command format, the format string, and the string
representation of the option's value, and evaluating this in a Tcl interpreter. Therefore the format string will be processed twice
by a Tcl parser, and appropriate care has to be taken with quoting.

The second #define will be generated only if is a valid C preprocessor macro symbol. By default the symbols generated
bydefine properties will end up in the package's own configuration header file. The -file option can be used to specify an

81

CDL Language Specification

alternative destination. At the time of writing the only valid alternative definition is -file=system.h, which will send the
output to the global configuration header file pkgconf/system.h.

Caution

Care has to be taken with the -format option. Because the Tcl interpreter's format command is used, this
property is subject to any problems with the implementation of this in the Tcl library. Generally there should
be no problems with string data or with integers up to 32 bits, but there may well be problems if 64-bit data is
involved. This issue may be addressed in a future release.

Example
cdl_component CYG_HAL_STARTUP {
 display "Startup type"
 flavor data
 legal_values {"RAM" "ROM" }
 default_value {"RAM"}
 no_define
 define -file=system.h CYG_HAL_STARTUP
 …
}

See Also
Properties define_format, define_header, define_proc, if_define and no_define.

82

CDL Language Specification

Name
Property define_format — Control how an option's value will appear in the configuration header file.

Synopsis
cdl_option <name> {
 define_format <format string>
 …
}

Description
For active options with the data flavor, and for active and enabled options with the booldata flavor, the configuration tools
will normally generate two #define's in the package's configuration header file. These take the following forms:

#define <name> <value>
#define <name>_<value>

The define_format property can be used to control exactly what appears as the value for the first of these #define's. For
example, the following can be used to output some configuration data as a C string:

cdl_option <name> {
 …
 define -format="\\\"%s\\\"" <symbol>
}

The implementation of define_format involves concatenating the Tcl command format, the format string, and the string
representation of the option's value, and evaluating this in a Tcl interpreter. Therefore the format string will be processed twice
by a Tcl parser, and appropriate care has to be taken with quoting.

The second #define will be generated only if is a valid C preprocessor macro symbol, and is not affected by the define_format
property. Also, the property is only relevant for options with the data or booldata flavor, and cannot be used in conjunction
with the no_define property since it makes no sense to specify the format if no #define is generated.

Caution

Because the Tcl interpreter's format command is used, this property is subject to any problems with the
implementation of this in the Tcl library. Generally there should be no problems with string data or with integers
up to 32 bits, but there may well be problems if 64-bit data is involved. This issue may be addressed in a future
release.

Example
cdl_option CYGNUM_UITRON_VER_ID {
 display "OS identification"
 flavor data
 legal_values 0 to 0xFFFF
 default_value 0
 define_format "0x%04x"
 description "
 This value is returned in the 'id'
 field of the T_VER structure in
 response to a get_ver() system call."
}

See Also
Properties define, define_header, define_proc, if_define and no_define.

83

CDL Language Specification

Name
Property define_header — Specify the configuration header file that will be generated for a given package.

Synopsis
cdl_package <name> {
 define_header <file name>
 …
}

Description
When the configuration tools generate a build tree, one of the steps is to output each package's configuration data to a header
file. For example the kernel's configuration data gets output to pkgconf/kernel.h. This allows each package's source
code to #include the appropriate header file and adapt to the choices made by the user.

By default the configuration tools will synthesize a file name from the package name. This involves removing any prefix such
as CYGPKG_, up to and including the first underscore, and then converting the remainder of the name to lower case. In some
cases it may be desirable to use a different header file, for example an existing package may have been ported to eCos and
the source code may already #include a particular file for configuration data. In such cases a define_header property can
be used to specify an alternative filename.

The define_header property can only be used in the body of a cdl_package command. It applies to a package as a whole
and cannot be used at a finer grain. The name specified in a define_header property will always be interpreted as relative to
the include/pkgconf sub-directory of the install tree.

Note

For hardware-specific packages such as device drivers and HAL packages, the current scheme of generating a
configuration header file name based on the package name may be abandoned. Instead all hardware packages
would send their configuration data to a single header file, pkgconf/hardware.h. This would make it easier
for code to obtain details of the current hardware, but obviously there are compatibility issues. For now it is
recommended that all hardware packages specify their configuration header file explicitly.

Example
cdl_package CYGPKG_HAL_ARM {
 display "ARM architecture"
 parent CYGPKG_HAL
 hardware
 include_dir cyg/hal
 define_header hal_arm.h
 …
}

See Also
Properties define, define_format, define_proc, if_define, no_define and hardware,

84

CDL Language Specification

Name
Property define_proc — Use a fragment of Tcl code to output additional data to configuration header files.

Synopsis
cdl_option <name> {
 define_proc <Tcl script>
 …
}

Description

For most configuration options it is sufficient to have an entry in the configuration header file of the form:

#define <name> <value>

In some cases it is desirable to perform some more complicated processing when generating a configuration header file. There
are a number of CDL properties for this, including define_format and if_define. The most flexible is define_proc: this allows
the component writer to specify a Tcl script that gets invoked whenever the configuration system generates the header file for
the owning package. The script can output anything to the header file, for example it could generate a C data structure based
on various configuration values.

At the point that the define_proc script is invoked there will be two channels to open files, accessible via Tcl
variables: cdl_header is a channel to the current package's own header file for example pkgconf/kernel.h;
cdl_system_header is a channel to the global configuration file pkgconf/system.h. A typical define_proc script
will use the puts command to output data to one of these channels.

define_proc properties only take effect if the current option is active and enabled. The default behavior of the configuration
system for an option with the bool flavor corresponds to the following define_proc:

cdl_option XXX {
 …
 define_proc {
 puts $cdl_header "#define XXX 1"
 }
}

Warning

In the current implementation it is not possible for a define_proc property to examine the current values of various
configuration options and adapt accordingly. This is a major limitation, and will be addressed in future versions
of the configuration tools.

Example
cdl_package CYGPKG_HAL_ARM_PID {
 display "ARM PID evaluation board"
 parent CYGPKG_HAL_ARM
 define_header hal_arm_pid.h
 include_dir cyg/hal
 hardware
 define_proc {
 puts $::cdl_system_header "#define CYGBLD_HAL_TARGET_H <pkgconf/hal_arm.h>"
 puts $::cdl_system_header "#define CYGBLD_HAL_PLATFORM_H <pkgconf/hal_arm_pid.h>"
 puts $::cdl_header ""
 puts $::cdl_header "#define HAL_PLATFORM_CPU \"ARM 7TDMI\""
 puts $::cdl_header "#define HAL_PLATFORM_BOARD \"PID\""
 puts $::cdl_header "#define HAL_PLATFORM_EXTRA \"\""
 puts $::cdl_header ""
 }
 …
}

85

CDL Language Specification

See Also
Properties define, define_format, define_header, if_define and no_define.

86

CDL Language Specification

Name
Property description — Provide a textual description for an option.

Synopsis
cdl_option <name> {
 description <text>
 …
}

Description
Users can only be expected to manipulate configuration options sensibly if they are given sufficient information about these
options. There are three properties which serve to explain an option in plain text: the display property gives a textual alias
for an option, which is usually more comprehensible than something like CYGPKG_LIBC_TIME_ZONES; the description
property gives a longer description, typically a paragraph or so; the doc property specifies the location of additional on-line
documentation related to a configuration option. In the context of a graphical tool the display string will be the primary way
for users to identify configuration options; the description paragraph will be visible whenever the option is selected; the on-
line documentation will only be accessed when the user explicitly requests it.

At present there is no way of providing any sort of formatting mark-up in a description. It is possible that future versions of
the configuration tools will provide some control over the way the description text gets rendered.

Example
cdl_option CYGDBG_INFRA_DEBUG_TRACE_MESSAGE {
 display "Use trace text"
 default_value 1
 description "
 All trace calls within eCos contain a text message
 which should give some information about the circumstances.
 These text messages will end up being embedded in the
 application image and hence there is a significant penalty
 in terms of image size.
 It is possible to suppress the use of these messages by
 disabling this option.
 This results in smaller code size, but there is less
 human-readable information available in the trace output,
 possibly only filenames and line numbers."
}

See Also
Properties display and doc.

87

CDL Language Specification

Name
Property display — Provide a short string describing this option.

Synopsis
cdl_option <name> {
 display <string>
 …
}

Description
Users can only be expected to manipulate configuration options sensibly if they are given sufficient information about these
options. There are three properties which serve to explain an option in plain text: the display property gives a textual alias
for an option, which is usually more comprehensible than something like CYGPKG_LIBC_TIME_ZONES; the description
property gives a longer description, typically a paragraph or so; the doc property specifies the location of additional on-line
documentation related to a configuration option. In the context of a graphical tool the display string will be the primary way
for users to identify configuration options; the description paragraph will be visible whenever the option is selected; the on-
line documentation will only be accessed when the user explicitly requests it.

Example
cdl_option CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE {
 display "Message box queue size"
 flavor data
 legal_values 1 to 65535
 default_value 10
 description "
 This configuration option controls the number of messages
 that can be queued in a message box before a non-blocking
 put() operation will fail or a blocking put() operation will
 block. The cost in memory is one pointer per message box for
 each possible message."
}

See Also
Properties description and doc.

88

CDL Language Specification

Name
Property doc — The location of online-documentation for a configuration option.

Synopsis
cdl_option <name> {
 doc <URL;>
 …
}

Description
Users can only be expected to manipulate configuration options sensibly if they are given sufficient information about these
options. There are three properties which serve to explain an option in plain text: the display property gives a textual alias
for an option, which is usually more comprehensible than something like CYGPKG_LIBC_TIME_ZONES; the description
property gives a longer description, typically a paragraph or so; the doc property specifies the location of additional on-line
documentation related to a configuration option. In the context of a graphical tool the display string will be the primary way
for users to identify configuration options; the description paragraph will be visible whenever the option is selected; the on-
line documentation will only be accessed when the user explicitly requests it.

The documentation may be an absolute URL, but more generally the on-line documentation will be shipped with the package
and can be accessed via a relative URL. If the package follows the directory layout conventions then the configuration tools
will search for the specified html file first in the doc subdirectory of the package, then relative to the package directory itself.
The URL may contain a # character to specify an anchor within a page.

Warning

At the time of writing the eCos packages in the standard distribution do not conform to the directory layout
conventions when it comes to the documentation. Instead of organizing the documentation on a per-package basis
and placing it in the corresponding doc sub-directories, all the documentation is kept in a central location. This
should get addressed in a future release of the system. Third party component writers should follow the layout
conventions.

Example
cdl_package CYGPKG_KERNEL {
 display "eCos kernel"
 doc ref/ecos-ref.4.html
 include_dir cyg/kernel
 description "
 This package contains the core functionality of the eCos
 kernel. It relies on functionality provided by various HAL
 packages and by the eCos infrastructure. In turn the eCos
 kernel provides support for other packages such as the device
 drivers and the uITRON compatibility layer."
 …
}

See Also
Properties description and display.

89

CDL Language Specification

Name
Property flavor — Specify the nature of a configuration option.

Synopsis
cdl_option <name> {
 flavor <flavor>
 …
}

Description
The state of a CDL configuration option is a somewhat complicated concept. This state determines what happens when a build
tree is generated: it controls what files get built and what #define's end up in configuration header files. The state also
controls the values used during expression evaluation. The key concepts are:

1. An option may or may not be loaded into the current configuration. However it is still possible for packages to reference
options which are not loaded in a requires constraint or other expression. If an option is not loaded then it will have no direct
effect on the build process, and 0 will be used for expression evaluation.

2. Even if an option is loaded it may still be inactive. Usually this is controlled by the option's location in the configuration
hierarchy. If an option's parent is active and enabled then the option will normally be active. If the parent is either
inactive or disabled then the option will be inactive. For example, if kernel timeslicing is diabled then the option
CYGNUM_KERNEL_SCHED_TIMESLICE_TICKS is irrelevant and must have no effect. The active_if property can be
used to specify additional constraints. If an option is inactive then it will have no direct effect on the build process, in other
words it will not cause any files to get built or #define's to be generated. For the purposes of expression evaluation an
inactive option has a value of 0.

3. An option may be enabled or disabled. Most options are boolean in nature, for example a particular function may get inlined
or it may involve a full procedure call. If an option is disabled then it has no direct effect on the build process, and for the
purposes of expression evaluation it has a value of 0.

4. An option may also have additional data associated with it, for example a numerical value used to control the size of an array.

Most options are boolean in nature and do not have any additional associated data. For some options only the data part makes
sense and users should be unable to manipulate the enabled/disabled part of the state. For a comparatively small number
of options it makes sense to have the ability to disable that option or to enable it and associate data as well. Finally, when
constructing an option hierarchy it is occasionally useful to have entities which serve only as placeholders. The flavor property
can be used to control all this. There are four possible values. It should be noted that the active or inactive state of an option
takes priority over the flavor: if an option is inactive then no #define's will be generated and any build-related properties
such as compile will be ignored.

flavor none The none is intended primarily for placeholder components in the hierarchy, although it can be used
for other purposes. Options with this flavor are always enabled and do not have any additional data
associated with them, so there is no way for users to modify the option. For the purposes of expression
evaluation an option with flavor none always has the value 1. Normal #define processing will
take place, so typically a single #define will be generated using the option name and a value of
1. Similarly build-related properties such as compile will take effect.

flavor bool Boolean options can be either enabled or disabled, and there is no additional data associated with
them. If a boolean option is disabled then no #define will be generated and any build-related
properties such as compile will be ignored. For the purposes of expression evaluation a disabled
option has the value 0. If a boolean option is enabled then normal #define processing will take
place, all build-related properties take effect, and the option's value will be 1.

flavor data Options with this flavor are always enabled, and have some additional data associated with them
which can be edited by the user. This data can be any sequence of characters, although in practice
the legal_values property will often be used to impose constraints. In appropriate contexts such as
expressions the configuration tools will attempt to interpret the data as integer or floating point

90

CDL Language Specification

numbers. Since an option with the data flavor cannot be disabled, normal #define processing
takes place and the data will be used for the value. Similarly all build-related properties take effect,
and the option's value for the purposes of expression evaluation is the data.

flavor booldata This combines the bool and data flavors. The option may be enabled or disabled, and in addition
the option has some associated data. If the option is disabled then no #define will be generated,
the build-related properties have no effect, and for the purposes of expression evaluation the option's
value is 0. If the option is enabled then a #define will be generated using the data as the value, all
build-related properties take effect, and the option's value for the purposes of expression evaluation
is the data. If 0 is legal data then it is not possible to distinguish this case from the option being
disabled or inactive.

Options and components have the bool flavor by default, but this can be changed as desired. Packages always have the
booldata flavor, and this cannot be changed. Interfaces have the data flavor by default, since the value of an interface is
a count of the number of active and enabled interfaces, but they can be given the bool or booldata flavors.

Note

The expression syntax needs to be extended to allow the loaded, active, enabled and data aspects of an option's
state to be examined individually. This would allow component writers to distinguish between a disabled
booldata option and an enabled one which has a value of 0. Such an enhancement to the expression syntax
may also prove useful in other circumstances.

Example
cdl_component CYGPKG_LIBM_COMPATIBILITY {
 cdl_component CYGNUM_LIBM_COMPATIBILITY {
 flavor booldata
 …

 cdl_option CYGNUM_LIBM_COMPAT_DEFAULT {
 flavor data
 …
 }
 }

 …
}

cdl_component CYGPKG_LIBM_TRACE {
 flavor bool
 …
}

See Also
Properties calculated, default_value and legal_values,

91

CDL Language Specification

Name
Property hardware — Specify that a package is tied to specific hardware.

Synopsis
cdl_option <name> {
 active_if <condition>
 …
}

Description
Some packages such as device drivers and HAL packages are hardware-specific, and generally it makes no sense to add
such packages to a configuration unless the corresponding hardware is present on your target system. Typically hardware
package selection happens automatically when you select your target. The hardware property can be used in the body of a
cdl_package command to indicate that the package is hardware-specific.

Note

At the time of writing the hardware property is largely ignored by the configuration tools, but this may change
in future. Amongst other possible changes, for hardware-specific packages such as device drivers and HAL
packages, the current scheme of generating a configuration header file name based purely on the package name
may be abandoned. Instead all hardware packages would send their configuration data to a single header file,
pkgconf/hardware.h. This would make it easier for code to obtain details of the current hardware, but
obviously there are compatibility issues. For now it is recommended that all hardware packages specify their
configuration header file explicitly.

Example
cdl_package CYGPKG_HAL_ARM {
 display "ARM architecture"
 parent CYGPKG_HAL
 hardware
 include_dir cyg/hal
 define_header hal_arm.h
 …
}

See Also
Property define_header, and command cdl_package.

92

CDL Language Specification

Name
Property if_define — Output a common preprocessor construct to a configuration header file.

Synopsis
cdl_option <name> {
 if_define [-file=<filename>] <symbol1> <symbol2>
 …
}

Description
The purpose of the if_define property is best explained by an example. Suppose you want finer-grained control over assertions,
say on a per-package or even a per-file basis rather than globally. The assertion macros can be defined by an exported header
file in an infrastructure package, using code like the following:

#ifdef CYGDBG_USE_ASSERTS
define CYG_ASSERT(_bool_, _msg_) \
 CYG_MACRO_START \
 if (! (_bool_)) \
 CYG_ASSERT_DOCALL(_msg_); \
 CYG_MACRO_END
#else
define CYG_ASSERT(_bool_, _msg_) CYG_EMPTY_STATEMENT
#endif

Assuming this header file is #include'd directly or indirectly by any code which may need to be built with assertions
enabled, the challenge is now to control whether or not CYGDBG_USE_ASSERTS is defined for any given source file. This
is the purpose of the if_define property:

cdl_option CYGDBG_KERNEL_USE_ASSERTS {
 …
 if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS
 requires CYGDBG_INFRA_ASSERTION_SUPPORT
}

If this option is active and enabled then the kernel's configuration header file would end up containing the following:

#ifdef CYGSRC_KERNEL
define CYGDBG_USE_ASSERTS 1
#endif

Kernel source code can now begin with the following construct:

#define CYGSRC_KERNEL 1
#include <pkgconf/kernel.h>
#include <cyg/infra/cyg_ass.h>

The configuration option only affects kernel source code, assuming nothing else #define's the symbol CYGSRC_KERNEL.
If the per-package assertion option is disabled then CYGDBG_USE_ASSERTS will not get defined. If the option is enabled
then CYGDBG_USE_ASSERTS will get defined and assertions will be enabled for the kernel sources. It is possible to use the
same mechanism for other facilities such as tracing, and to apply it at a finer grain such as individual source files by having
multiple options with if_define properties and multiple symbols such as CYGSRC_KERNEL_SCHED_BITMAP_CXX.

The if_define property takes two arguments, both of which must be valid C preprocessor symbols. If the current option is active
and enabled then three lines will be output to the configuration header file:

#ifdef <symbol1>
define <symbol2>
#endif

If the option is inactive or disabled then these lines will not be output. By default the current package's configuration header
file will be used, but it is possible to specify an alternative destination using a -file option. At present the only legitimate
alternative destination is system.h, the global configuration header. if_define processing happens in addition to, not instead
of, the normal #define processing or the handling of other header-file related properties.

93

CDL Language Specification

Note

The infrastructure in the current eCos release does not yet work this way. In future it may do so, and the intention
is that suitable configuration options get generated semi-automatically by the configuration system rather than
having to be defined explicitly.

Tip

As an alternative to changing the configuration, updating the build tree, and so on, it is possible to enable assertions
by editing a source file directly, for example:

#define CYGSRC_KERNEL 1
#define CYGDBG_USE_ASSERTS 1
#include <pkgconf/kernel.h>
#include <cyg/infra/cyg_ass.h>

The assertion header file does not care whether CYGDBG_USE_ASSERTS is #define'd via a configuration
option or by explicit code. This technique can be useful to component writers when debugging their source code,
although care has to be taken to remove any such #define's later on.

Example
cdl_option CYGDBG_KERNEL_USE_ASSERTS {
 display "Assertions in the kernel package"
 …
 if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS
 requires CYGDBG_INFRA_ASSERTION_SUPPORT
}

See Also
Properties define, define_format, define_header, define_proc and no_define.

94

CDL Language Specification

Name
Property implements — Enabling this option provides one instance of a more general interface.

Synopsis
cdl_option <name> {
 implements <interface>
 …
}

Description
The CDL interface concept provides an abstraction mechanism that can be useful in many different circumstances. Essentially
an interface is a calculated option whose value is the number of active and enabled options which implement that interface.
For example the interface CYGINT_KERNEL_SCHEDULER has a value corresponding to the number of schedulers in the
system, typically just one.

The implements property takes a single argument, which should be the name of an interface. This interface may be defined
in the same package as the implementor or in some other package. In the latter case it may sometimes be appropriate for the
implementor or the implementor's package to have a requires property for the package containing the interface. An option
may contain multiple implements properties. It is possible for an option to implement a given interface multiple times, and
on occasion this is actually useful.

Example
cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
 display "Multi-level queue scheduler"
 default_value 1
 implements CYGINT_KERNEL_SCHEDULER
 …
}

See Also
Command cdl_interface.

95

CDL Language Specification

Name
Property include_dir — Specify the desired location of a package's exported header files in the install tree.

Synopsis
cdl_package <name> {
 include_dir <sub-directory>
 …
}

Description
Most packages export one or more header files defining their public interface. For example the C library exports header files
such as stdio.h and ctype.h. If the package follows the directory layout conventions then the exported header files will
normally be found in the package's include sub-directory. Alternatively the include_files property can be used to specify
which header files should be exported.

By default a package's exported header files will be copied to the include sub-directory of the install tree. This is correct for
packages like the C library because that is the correct location for files such as stdio.h. However to reduce the probability
of name clashes it is desirable for packages to use different sub-directories, for example infrastructure header files get copied
to include/cyg/infra rather than to the top-level include directory itself.

It would be possible to replicate these sub-directories in each package's source tree, such that the infrastructure header file
sources lived in include/cyg/infra in the source tree as well as in the install tree. This would make things more difficult
for the package developers. Instead it is possible to specify the desired install tree sub-directory using an include_dir property,
for example include_dir cyg/infra.

The include_dir property can only be used in the body of a cdl_package command, since it applies to all of the header files
exported by a package, and only one include_dir property can be used. If there is no include_dir property then exported header
files will end up in the top-level include directory of the install tree.

Example
cdl_package CYGPKG_INFRA {
 display "Infrastructure"
 include_dir cyg/infra
 description "
 Common types and useful macros.
 Tracing and assertion facilities.
 Package startup options."
 …
}

See Also
Property include_files, and command cdl_package.

96

CDL Language Specification

Name
Property include_files — List the header files that are exported by a package.

Synopsis
cdl_package <name> {
 include_files <file1> …
 …
}

Description
Most packages export one or more header files defining their public interface. For example the C library exports header files
such as stdio.h and ctype.h. If the package follows the directory layout conventions then the exported header files will
normally be found in the package's include sub-directory. For packages which do not follow these conventions, typically
simple ones for which a complicated sub-directory hierarchy is undesirable, there has to be an alternative way of specifying
which header file or files define the public interface. The include_files property provides support for this.

By default, if a package does not have an include subdirectory and it does not have an include_files property then all files
with a suffix of .h, .hxx, .inl or .inc will be treated as public header files. However some of these may be private files
containing implementation details. If there is an include_files property then only the files listed in that property will be exported.

If a package should not export any header files but does contain private implementation headers, an include_files property
with no arguments should be used.

Example
cdl_package <SOME_PACKAGE> {
 …
 include_dir <some directory>
 include_files interface.h
}
cdl_package <ANOTHER_PACKAGE> {
 …
 include_files
}

See Also
Property include_dir, and command cdl_package.

97

CDL Language Specification

Name
Property legal_values — Impose constraints on the possible values for an option.

Synopsis
cdl_option <name> {
 legal_values <list expression>
 …
}

Description

Options with the data or booldata flavors can have an arbitrary sequence of characters as their data. In nearly all cases some
restrictions have to be imposed, for example the data should correspond to a number within a certain range, or it should be one of
a small number of constants. The legal_values property can be used to impose such constraints. The arguments to the property
should be a CDL list expression, see the section called “List Expressions” for the syntactic details. Common examples include:

legal_values 0 to 0x7fff
legal_values 9600 19200 38400
legal_values { "RAM" "ROM" }

The legal_values property can only be used for options with the data or booldata flavors, since it makes little sense to
further constrain the legal values of a boolean option. An option can have at most one legal_values property.

Tip

If the first entry in a legal_values list expression is a negative number, for example legal_values -1 to 1
then this can be misinterpreted as an option instead of as part of the expression. Currently the legal_values property
does not take any options, but this may change in future. Option processing halts at the sequence --, so the
desired range can be expressed safely using legal_values -- -1 to 1

Note

Architectural HAL packages should provide constants which can be used in legal_values list expressions. For
example it should be possible to specify a numeric range such as 0 to CYGARC_MAXINT, rather than hard-
wiring numbers such as 0x7fffffff which may not be valid on all targets. Current HAL packages do not
define such constants.

Note

The legal_values property is restricted mainly to numerical ranges and simple enumerations, and cannot cope with
more complicated data items. Future versions of the configuration system will provide additional data validation
facilities, for example a check_proc property which specifies a Tcl script that can be used to perform the
validation.

Example
cdl_option CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET {
 display "Default Standard Time offset"
 flavor data
 legal_values -- -90000 to 90000
 default_value -- 0
 description "
 This option controls the offset from UTC in
 seconds when in local Standard Time. This
 value can be positive or negative. It
 can also be set at run time using the
 cyg_libc_time_setzoneoffsets() function."
}

98

CDL Language Specification

See Also
Properties calculated, default_value, and flavor.

99

CDL Language Specification

Name
Property library — Specify which library should contain the object files generated by building this package.

Synopsis
cdl_package <name> {
 library <library name>
 …
}

Description
By default all object files that get built for all packages end up in a single library, libtarget.a. This makes things easier
for the typical application developer because it is only necessary to link with a single library, rather than with separate libraries
for each package. It is possible to specify an alternative library for specific files as an option to the compile and make_object
properties, and there is one library libextras.a which serves a specific purpose in the build system. The library property
allows an alternative library to be specified for all the object files that will be generated for a given package.

The use of the library property should be avoided, since it makes things more difficult for application developers. The property
is intended only for special cases, for example if there are legal objections to mingling object files from different packages in a
single library. It could also be used to work around name clash problems if two packages happen to define an exported symbol
with the same name, but any attempt to use multiple libraries in this way is error-prone and should be avoided.

The library property takes a single argument, the name of a library, which should follow the standard naming convention of
lib<something>.a. A library property can only occur in the body of a cdl_package command and applies to all object
files generated for that package (except where explicitly overwritten with a -library= option to one of the build-related
properties). A cdl_package body can contain at most one library property.

Example
cdl_package <SOME_PACKAGE> {
 …
 library libSomePackage.a
}

See Also
Properties compile, make, and make_object, command cdl_package.

100

CDL Language Specification

Name
Property make — Define an additional custom build step associated with an option, resulting in a target that should not go
directly into a library.

Synopsis
cdl_option <name> {
 make [-priority=<pri>] {
 <custom build step>
 }
 …
}

Description
When building an eCos configuration the primary target is a single library, libtarget.a. In some cases it is necessary to
build some additional targets. For example architectural HAL packages typically build a linker script and some start-up code.
Such additional targets can be specified by a make property. Any option can have one or more make properties, although
typically such properties only occur in the body of a cdl_package command.

The make property takes a single argument, which resembles a makefile rule: it consists of a target, a list of dependencies, and
one or more commands that should be executed. However the argument is not a makefile fragment, and custom build steps
may get executed in build environments that do not involve make. For full details of custom build steps see the section called
“Custom Build Steps”.

Warning

The exact syntax and limitations of custom build steps have not yet been finalized, and are subject to change in
future versions of the configuration tools.

The make property takes an optional priority argument indicating the order in which build steps take place. This priority
complements the dependency list, and avoids problems with packages needing to know details of custom build steps in other
packages (which may change between releases). The defined order is:

Priority 0 The header files exported by the current set of packages are copied to the appropriate places in the
include subdirectory of the install tree. Any unnecessary copies are avoided, to prevent rebuilds of
package and application source modules caused by header file dependencies.

Note

A possible future enhancement of the build system may result in the build and install trees
being updated automatically if there has been a change to the ecos.ecc configuration
savefile.

Priority 100 All files specified in compile properties will get built, producing the corresponding object files. In addition
any custom build steps defined by make_object properties get executed, unless there is a -priority=
option.

Priority 200 The libraries now get built using the appropriate object files.

Priority 300 Any custom build steps specified by make properties now get executed, unless the priority for a particular
build step is changed from its default.

For example, if a custom build step needs to take place before any of the normal source files get compiled then it should
be given a priority somewhere between 0 and 100. If a custom build step involves post-processing an object file prior to its
incorporation into a library then a priority between 100 and 200 should be used.

Example
cdl_package CYGPKG_HAL_MN10300_AM33 {

101

CDL Language Specification

 display "MN10300 AM33 variant"
 parent CYGPKG_HAL_MN10300
 implements CYGINT_HAL_MN10300_VARIANT
 hardware
 include_dir cyg/hal
 define_header hal_mn10300_am33.h
 description "
 The MN10300 AM33 variant HAL package provides generic
 support for this processor architecture. It is also
 necessary to select a specific target platform HAL
 package."

 make {
 <PREFIX>/lib/target.ld: <PACKAGE>/src/mn10300_am33.ld
 $(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) $(CFLAGS) -o $@ $>
 @echo $@ ": \\" > $(notdir $@).deps
 @tail +2 target.tmp >> $(notdir $@).deps
 @echo >> $(notdir $@).deps
 @rm target.tmp
 }
}

See Also
Properties compile, make_object and library.

102

CDL Language Specification

Name
Property make_object — Define a custom build step, resulting in an object file that should go into a library.

Synopsis
cdl_option <name> {
 make_object [-library=<library>] [-priority=<pri>] {
 <custom build step>
 }
 …
}

Description
When building an eCos configuration the primary target is a single library, libtarget.a. Most of the object files which
go into this library will be generated as a result of compile properties. Occasionally it may be necessary to have special build
steps for a given object file, and this can be achieved with a make_object property. The use of this property should be avoided
whenever possible because it greatly increases the risk of portability problems, both on the host side because of possible
problems with the tools, and on the target side because a custom build step may not allow adequately for the wide variety of
architectures supported byeCos.

The make_object property takes a single argument, which resembles a makefile rule: it consists of a target, a list of
dependencies, and one or more commands that should be executed. The target should be an object file. However the
make_object argument is not a makefile fragment, and custom build steps may get executed in build environments that do not
involve make. For full details of custom build steps see the section called “Custom Build Steps”.

Warning

The exact syntax and limitations of custom build steps have not yet been finalized, and may change in future
versions of the configuration tools.

The make_object property takes an optional library argument. If no library is specified then the default library for the current
package will be used, which will be libtarget.a unless the cdl_package command contains a library property.

The make_object property also takes an optional priority argument indicating the order in which build steps take place. This
priority complements the dependency list, and avoids problems with packages needing to know details of custom build steps
in other packages (which may change between releases). The defined order is:

Priority 0 The header files exported by the current set of packages are copied to the appropriate places in the
include subdirectory of the install tree. Any unnecessary copies are avoided, to prevent rebuilds of
package and application source modules caused by header file dependencies.

Note

A possible future enhancement of the build system may result in the build and install trees
being updated automatically if there has been a change to the ecos.ecc configuration
savefile.

Priority 100 All files specified in compile properties will get built, producing the corresponding object files. In addition
any custom build steps defined by make_object properties get executed, unless there is a -priority=
option.

Priority 200 The libraries now get built using the appropriate object files.

Priority 300 Any custom build steps specified by make properties now get executed, unless the priority for a particular
build step is changed from its default.

For example, if a custom build step needs to take place before any of the normal source files get compiled then it should
be given a priority somewhere between 0 and 100. If a custom build step involves post-processing an object file prior to its

103

CDL Language Specification

incorporation into a library then a priority between 100 and 200 should be used. It is not sensible to have a priority above 200,
since that would imply building an additional object file for a library that has already been created.

Example
cdl_option XXX {
 …
 make_object {
 parser.o: parser.y
 yacc $<
 $(CC) $(CFLAGS) -o $@ y.tab.c
 }
}

See Also
Properties compile, make and library.

104

CDL Language Specification

Name
Property no_define — Suppress the normal generation of a preprocessor #define symbol in a configuration header file.

Synopsis
cdl_option <name> {
 no_define
 …
}

Description
By default all active and enabled properties result in either one or two #define'd symbols in the package's configuration
header file, and this is one of the main ways in which options can affect packages at build-time. It is possible to suppress the
default #define's by specifying a no_define property in the body of an option or other CDL entity. This property takes no
arguments and should occur only once in a given body.

The no_define property is frequently used in conjunction with one of the other header-file related properties such as define.
If one of the other properties is used to export the required information to a configuration header file then often there is little
point in exporting the default #define as well — in fact there could be a name clash. Theno_define property can also be
useful if the sole purpose of an option is to affect which files get built, and the default #define would never get tested in any
source code. However in such cases the default #define is mostly harmless and there is little to be gained by suppressing it.

Example
cdl_component CYG_HAL_STARTUP {
 display "Startup type"
 flavor data
 legal_values { "RAM" "ROM" }
 default_value {"RAM"}
 no_define
 define -file system.h CYG_HAL_STARTUP
 …
}

See Also
Properties define, define_format, define_header, define_proc and if_define.

105

CDL Language Specification

Name
Property parent — Control the location of an option in the configuration hierarchy.

Synopsis
cdl_option <name> {
 parent <component or package>
 …
}

Description

Configuration options live in a hierarchy of packages and components. By default a given option's position in the hierarchy is a
simple consequence of its position within the CDL scripts. Packages are generally placed at the top-level of the configuration.
Any components or options that are defined at the same level as the cdl_package command in a package's top-level CDL
script are placed immediately below that package in the hierarchy. Any options or components that are defined in the body of
a cdl_package or cdl_component command, or that are read in as a result of processing a component's script property,
will be placed immediately below that package or component in the hierarchy.

In some circumstances it is useful to specify an alternative position in the hierarchy for a given option. For example it is often
convenient to re-parent device driver packages below CYGPKG_IO in the configuration hierarchy, thus reducing the number
of packages at the top level of the hierarchy and making navigation easier. The parent property can be used to achieve this.

The parent property takes a single argument, which should be the name of a package or component. The body of a
cdl_option or other CDL entity can contain at most one parent property.

Although the parent property affects an option's position in the overall hierarchy and hence whether or not that option is active,
a re-parented option still belongs to the package that defines it. By default any #define's will be exported to that package's
configuration header file. Any compile properties can only reference source files present in that package, and it is not directly
possible to cause some file in another package to be built by re-parenting.

As a special case, if an empty string is specified for the parent then the option is placed at the top of the hierarchy, ahead of
any packages which are not explicitly re-parented in this way. This facility is useful for configuration options such as global
preferences and default compiler flags.

Tip

If an option is re-parented somewhere below another package and that other package is not actually loaded, the
option is an orphan and its active/inactive state is undefined. In such cases it is a good idea for the owning package
to require the presence of the other one. Unfortunately this technique does not work if a package as a whole
is reparented below another one that has not been loaded: the package is orphaned so it may be automatically
inactive, and hence any requires properties would have no effect.

Example
cdl_package CYGPKG_HAL_I386 {
 display "i386 architecture"
 parent CYGPKG_HAL
 hardware
 include_dir cyg/hal
 define_header hal_i386.h
 …
}

cdl_component CYGBLD_GLOBAL_OPTIONS {
 display "Global build options"
 parent ""
 …
}

106

CDL Language Specification

See Also
Property script, commands cdl_component and cdl_package.

107

CDL Language Specification

Name
Property requires — List constraints that the configuration should satisfy if a given option is active and enabled..

Synopsis
cdl_option <name> {
 requires <goal expression>
 …
}

Description
Configuration options are not independent. For example the C library can provide thread-safe implementations of certain
functions, but only if the kernel is present, if the kernel provides multi-threading, and if the kernel options related to per-thread
data are enabled. It is possible to express such constraints using requires properties.

The arguments to a requires property should constitute a goal expression, as described in the section called “List Expressions”.
Most goal expressions are relatively simple because the constraints being described are simple, but complicated expressions can
be used when necessary. The body of an option or other CDL entity can contain any number of requires constraints. If the option
is active and enabled then all these constraints should be satisfied, and any goal expressions which evaluate to 0 will result in
conflicts being raised. It is possible for users to ignore such conflicts and attempt to build the current configuration anyway, but
there is no guarantee that anything will work. If an option is inactive or disabled then its requires constraints will be ignored.

The configuration system contains an inference engine which can resolve many types of conflicts automatically. For example,
if option A is enabled and requires an option B that is currently disabled then the inference engine may attempt to resolve the
conflict by enabling B. However this will not always be possible, for example there may be other constraints in the configuration
which force B to be disabled at present, in which case user intervention is required.

Example
cdl_component CYGPKG_IO_SERIAL_POWERPC_COGENT_SERIAL_A {
 display "Cogent PowerPC serial port A driver"
 flavor bool
 default_value 0
 requires (CYGIMP_KERNEL_INTERRUPTS_CHAIN || \
 !CYGPKG_IO_SERIAL_POWERPC_COGENT_SERIAL_B)
 …
}

See Also
Property active_if.

108

CDL Language Specification

Name
Property script — Include additional configuration information from another CDL script.

Synopsis
cdl_component <name> {
 script <filename>
 …
}

Description
It is possible to define all the configuration options and sub-components for a given package in a single CDL script, either by
nesting them in the appropriate command bodies, by extensive use of the parent property, or by some combination of these two.
However for large packages this is inconvenient and it is better to split the raw configuration data over several different files.
The script property can be used to achieve this. It takes a single filename as argument. If the package follows the directory layout
conventions then the configuration tools will look for the specified file in the cdl sub-directory of the package, otherwise it
will look for the file relative to the package's top-level directory.

The script property can only occur in the body of a cdl_componentcommand, and only one script property per body is
allowed.

Example
cdl_component CYGPKG_UITRON_TASKS {
 display "Tasks"
 flavor none
 description "
 uITRON Tasks are the basic blocks of multi-tasking
 in the uITRON world; they are threads or lightweight
 processes, sharing the address space and the CPU.
 They communicate using the primitives outlined above.
 Each has a stack, an entry point (a C or C++ function),
 and (where appropriate) a scheduling priority."

 script tasks.cdl
}

See Also
Command cdl_component, and property parent.

109

	The eCos Component Writer's Guide
	Table of Contents
	Chapter 1. Overview
	Terminology
	Component Framework
	Configuration Option
	Component
	Package
	Configuration
	Target
	Template
	Properties
	Consequences
	Constraints
	Conflicts
	CDL
	Component Repository

	Why Configurability?
	Approaches to Configurability
	Degrees of Configurability
	Warnings

	Chapter 2. Package Organization
	Packages and the Component Repository
	Package Versioning
	Package Contents and Layout
	Outline of the Build Process
	Configurable Source Code
	Compiler Flag Dependencies
	Package Interfaces and Implementations
	Source Code and Configuration Options

	Exported Header Files
	Configurable Functionality
	Nested #include's
	Including Configuration Headers

	Package Documentation
	Test Cases
	Host-side Support

	Making a Package Distribution
	The eCos package distribution file format
	Preparing eCos packages for distribution

	Chapter 3. The CDL Language
	Language Overview
	CDL Commands
	CDL Properties
	Information-providing Properties
	The Configuration Hierarchy
	Value-related Properties
	Generating the Configuration Header Files
	Controlling what gets Built
	Miscellaneous Properties

	Option Naming Convention
	An Introduction to Tcl
	Values and Expressions
	Option Values
	Is the Option Loaded?
	Is the Option Active
	Is the Option Enabled? What is the Data?
	Some Examples

	Ordinary Expressions
	Functions
	Goal Expressions
	List Expressions

	Interfaces
	Updating the ecos.db database

	Chapter 4. The Build Process
	Build Tree Generation
	Configuration Header File Generation
	The system.h Header

	Building eCos
	Updating the Build Tree
	Exporting Public Header Files
	Compiling
	Generating the Libraries
	The extras.o file
	Compilers and Flags
	Custom Build Steps
	Startup Code
	The Linker Script

	Building Test Cases

	Chapter 5. CDL Language Specification
	cdl_option
	cdl_component
	cdl_package
	cdl_interface
	active_if
	calculated
	compile
	default_value
	define
	define_format
	define_header
	define_proc
	description
	display
	doc
	flavor
	hardware
	if_define
	implements
	include_dir
	include_files
	legal_values
	library
	make
	make_object
	no_define
	parent
	requires
	script

